Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of "auroral beads". At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the "Tamao travel time" from near-earth neutral line reconnection and formation of the SCW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067274 | PMC |
http://dx.doi.org/10.1186/s40562-017-0089-0 | DOI Listing |
Earth's magnetotail plays a critical role in the dynamics of the magnetosphere, particularly during intervals of geomagnetic activity. To improve our understanding of the ion dynamics in this region, energetic neutral atom (ENA) imaging can provide global measurements to place in situ measurements in context and validate simulations. The NASA Two Wide-angle Imaging Neutral-atom Spectrometers mission provided near-continuous observations using ENA imagers.
View Article and Find Full Text PDFJ Geophys Res Space Phys
September 2022
We study 10 years (1995-2004 inclusive) of auroral kilometric radiation (AKR) radio emission data from the Wind spacecraft to examine the link between AKR and terrestrial substorms. We use substorm lists based on parameters including ground magnetometer signatures and geosynchronous particle injections as a basis for superposed epoch analyses of the AKR data. The results for each list show a similar, clear response of the AKR power around substorm onset.
View Article and Find Full Text PDFIn the present study we examine three substorm events, Events 1-3, focusing on the spatio-temporal development of auroral electrojets (AEJs) before auroral breakup. In Events 1 and 2, auroral breakup was preceded by the equatorward motion of an auroral form, and the ground magnetic field changed northward and southward in the west and east of the expected equatorward flow, respectively. Provided that these magnetic disturbances were caused by local ionospheric Hall currents, this feature suggests that the equatorward flow turned both eastward and westward as it reached the equatorward part of the auroral oval.
View Article and Find Full Text PDFNat Commun
March 2021
School of Aerospace, Cranfield University, Cranfield, UK.
Geomagnetic substorms are a global magnetospheric reconfiguration, during which energy is abruptly transported to the ionosphere. Central to this are the auroral electrojets, large-scale ionospheric currents that are part of a larger three-dimensional system, the substorm current wedge. Many, often conflicting, magnetospheric reconfiguration scenarios have been proposed to describe the substorm current wedge evolution and structure.
View Article and Find Full Text PDFFour closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called "RBSP") at ~5.8 , and a THEMIS satellite at ~5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!