For the first time, stable pillar[5]arene/Ag nanoparticles, consisting of water-soluble pillar[5]arene containing γ-sulfobetaine fragments and Ag ions without Ag-Ag bonds, were synthesized and characterized. The pillar[5]arene/Ag (ratio 1:10) nanoparticles obtained were cubic with a rib length of 100 nm and are less cytotoxic than Ag ions. The survival of the A549 model cells in the presence of pillar[5]arene/Ag (1:10) nanoparticles at a concentration of 30 and 40 μM was 76% and 55%, while in the absence of pillar[5]arene, the cell survival for free Ag ions at the same concentration was 30% and 10%, respectively. The results can be used to create new antibacterial materials and 2D biomedical coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082700PMC
http://dx.doi.org/10.3762/bjnano.11.33DOI Listing

Publication Analysis

Top Keywords

110 nanoparticles
8
nanoparticles
4
nanoparticles based
4
based zwitterionic
4
zwitterionic pillar[5]arene
4
pillar[5]arene synthesis
4
synthesis self-assembly
4
self-assembly cytotoxicity
4
cytotoxicity human
4
human lung
4

Similar Publications

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

December 2024

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!