The aim of this study was to explore the roles of GPX2, a member of the glutathione peroxidase family (GPXs, GSH-Px), in cisplatin (DDP) resistance in lung adenocarcinoma (LUAD). GPX2 was found to be the most significantly upregulated gene in a DDP-resistant A549/DDP cell line compared with the parental A549 cell line by RNA sequencing. The knockdown of GPX2 expression in A549/DDP cells inhibited cell proliferation and , decreased the IC values of DDP, induced apoptosis, inhibited the activities of GSH-Px and superoxide dismutase (SOD), inhibited ATP production and glucose uptake, and increased malondialdehyde (MDA) and reactive oxygen species (ROS) production; while GPX2 overexpression in A549 cells resulted in the opposite effects. Using gene set enrichment analysis (GSEA), we found that GPX2 may be involved in DDP resistance through mediating drug metabolism, the cell cycle, DNA repair and energy metabolism, and the regulation of an ATP-binding cassette (ABC) transporters member ABCB6, which is one of the hallmark genes in glycolysis. Moreover, immunohistochemistry revealed that GPX2 was upregulated in 58.6% (89/152) of LUAD cases, and elevated GPX2 expression was correlated with high expression of ABCB6, high 18-fluorodeoxyglucose (18F-FDG) uptake, and adverse disease-free survival (DFS) in our cohort. The Cancer Genome Atlas (TCGA) data also indicated that GPX2 expression was higher in LUAD than it was in normal lung tissues, and the mRNA expression levels of GPX2 and ABCB6 were positively correlated. In conclusion, our study demonstrates that GPX2 acts as oncogene in LUAD and promotes DDP resistance by regulating oxidative stress and energy metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079220PMC
http://dx.doi.org/10.1155/2020/7370157DOI Listing

Publication Analysis

Top Keywords

ddp resistance
12
gpx2 expression
12
gpx2
10
glutathione peroxidase
8
resistance lung
8
lung adenocarcinoma
8
gpx2 upregulated
8
energy metabolism
8
expression
6
elevated glutathione
4

Similar Publications

Glutamine, Serine and Glycine at Increasing Concentrations Regulate Cisplatin Sensitivity in Gastric Cancer by Posttranslational Modifications of KDM4A.

Mol Carcinog

January 2025

Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China.

Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling.

View Article and Find Full Text PDF

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

Background: Non-small-cell lung cancer (NSCLC) remains a deadly malignancy worldwide. Resistance to cisplatin (DDP) is a significant obstacle that limits the therapeutic efficacy in NSCLC patients.

Objectives: This study investigated the role and mechanism of 24-dehydrocholesterol reductase (DHCR24) in DDP resistance in NSCLC cells.

View Article and Find Full Text PDF

Chemotherapy is an effective treatment for gastric cancer. However, many patients develop resistance to chemotherapeutic agents during clinical treatment. LncRNA CCAT1 has recently been shown to influence cellular resistance to specific chemotherapeutic drugs, but its role in gastric cancer remains underexplored.

View Article and Find Full Text PDF

Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!