Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modeling assumption for such experiments is that responses from units within a block are dependent. Accounting for such dependencies in both the design of the experiment and the modeling of the resulting data when the response is not normally distributed can be challenging, particularly in terms of the computation required to find an optimal design. The application of copulas and marginal modeling provides a computationally efficient approach for estimating population-average treatment effects. Motivated by an experiment from materials testing, we develop and demonstrate designs with blocks of size two using copula models. Such designs are also important in applications ranging from microarray experiments to experiments on human eyes or limbs with naturally occurring blocks of size two. We present a methodology for design selection, make comparisons to existing approaches in the literature, and assess the robustness of the designs to modeling assumptions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079558 | PMC |
http://dx.doi.org/10.1002/asmb.2469 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
The diverse types and sizes, proximity to non-nodule structures, identical shape characteristics, and varying sizes of nodules make them challenging for segmentation methods. Although many efforts have been made in automatic lung nodule segmentation, most of them have not sufficiently addressed the challenges related to the type and size of nodules, such as juxta-pleural and juxta-vascular nodules. The current research introduces a Squeeze-Excitation Dilated Attention-based Residual U-Net (SEDARU-Net) with a robust intensity normalization technique to address the challenges related to different types and sizes of lung nodules and to achieve an improved lung nodule segmentation.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Cognitive flexibility is the ability to appropriately adapt one's thinking and behavior to changing environmental demands and is conceptualized as an aspect of executive function. The dopamine system has been implicated in cognitive flexibility; however, a direct, that is, neurochemical, link to cognitive flexibility has not been shown yet. The aim of this study was, therefore, to investigate how cognitive flexibility is mediated by dopaminergic signaling in the ventromedial prefrontal cortex (vmPFC).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.
The prognosis for patients with melanoma loco-regional metastases is very heterogenous. Adjuvant PD-L1-inhibitors have improved clinical outcome for this patient group, but the prognostic impact of tumour PD-L1 expression and number of tumour infiltrating lymphocytes (TILs) is still largely unknown. Here, we investigated the impact on survival for CD3, CD8, FOXP3 and PD-L1 TIL counts and tumour PD-L1 expression in melanoma loco-regional metastases.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.
Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.
Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).
Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.
Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!