Purpose: p62/Sequestosome 1 (p62) is a stress-induced protein that is involved in several different intracellular pathways, including regulation of aspects of protein degradation. p62 levels are elevated in several types of cataracts. We investigated whether levels of p62 and its phosphorylation were altered in the lenses of Cx50D47A mice, which express a mutant of connexin50 (Cx50) that leads to cataracts and impaired lens differentiation. To evaluate the importance of p62 in the lens defects caused by a connexin50 mutant, we also examined the effect of deleting in homozygous Cx50D47A mice.

Methods: Protein levels were determined with immunoblotting. Mouse lenses were examined with dark-field illumination microscopy. Intensities of the opacities and lens equatorial diameters were quantified using ImageJ. Nuclei and nuclear remnants were detected with fluorescence microscopy of lens sections stained with 4',6-diamino-2-phenylindole dihydrochloride (DAPI).

Results: Levels of total p62 were increased in the lenses of homozygous Cx50D47A mice compared to those of the wild-type animals. The ratio of p62 phosphorylated at threonine-269/serine-272 (T269/S272) to total p62 was significantly decreased, whereas the ratio of p62 phosphorylated at serine-349 (S349) to total p62 was significantly increased in lenses of homozygous Cx50D47A mice. However, deletion of did not affect the sizes of the lenses or the severity of their cataracts in homozygous Cx50D47A mice. Deletion of did not improve connexin50 or connexin46 levels. Moreover, deletion of did not change the levels of crystallins, histone H3, the mitochondrial import receptor subunit TOM20 homolog, or the abundance of nuclei and nuclear fragments in the lenses of homozygous Cx50D47A mice. Homozygous deletion of led to an 84% increase in the levels of ubiquilin 2, but did not significantly affect the levels of ubiquilin 1 or ubiquilin 4.

Conclusions: Although homozygous Cx50D47A lenses have increased levels of p62, a specific reduction in p62 phosphorylation at T269/S272, and a specific increase in p62 phosphorylation at S349, this protein is not a critical determinant of the severity of the abnormalities of these lenses (reduced growth or differentiation and cataracts). The lens may utilize redundant or compensatory systems (such as changes in levels of ubiquilin 2) to compensate for the lack of p62 in homozygous Cx50D47A lenses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090271PMC

Publication Analysis

Top Keywords

homozygous cx50d47a
28
cx50d47a mice
20
p62
13
cx50d47a lenses
12
p62 phosphorylation
12
total p62
12
lenses homozygous
12
levels ubiquilin
12
lenses
10
levels
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!