The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute respiratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submitted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12 ×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as restricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microarray for hybridization. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microarray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide microarray, which can improve the positive ratio of the diagnosis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089259 | PMC |
http://dx.doi.org/10.1007/BF03183928 | DOI Listing |
Biomed Khim
August 2024
Institute of Biomedical Chemistry, Moscow, Russia.
Caspase-2 (Casp-2) is an enzyme that regulates the development of apoptosis upon alternative splicing of its mRNA. The long form of Casp-2 (Casp-2L) promotes apoptosis while the short form (Casp-2S) has decreased enzymatic activity and inhibits the development of apoptotic processes. However, very little is known about the mechanism of Casp-2 alternative splicing.
View Article and Find Full Text PDFJ Med Case Rep
June 2023
Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia.
Background: The 18q- deletion syndrome is a rare congenital chromosomal disorder caused by a partial deletion of the long arm of chromosome 18. The diagnosis of a patient with this syndrome relies on the family medical history, physical examination, developmental assessment, and cytogenetic findings. However, the phenotype of patients with 18q- deletion syndrome can be highly variable, ranging from almost normal to severe malformations and intellectual disability, and normal cytogenetic findings are common, thus complicating the diagnosis.
View Article and Find Full Text PDFTalanta
January 2022
National Center for Radioisotopes Technology, Nuclear Science Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia. Electronic address:
Dabigatran etexilate (DBG) is a new anticoagulant drug (commercially sold under the names Pradaxa® and Pradax™) that replaces Warfarin, the landmark agent for anticoagulation therapy. Inadequate administration of DBG or in the cases of massive bleeding that occurs after renal impairment, DBG therapy can carry a substantial life-threatening risks. One of the major limitations of DBG treatment is the lack of a simple and quick tool for measuring its level in blood in the case of massive bleedings or emergency operations.
View Article and Find Full Text PDFTalanta
October 2020
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh, 11533, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia. Electronic address:
Aptamers are single-stranded DNA or RNA, which have attracted considerable scientific interest due to their characteristic of specific and selective binding to target molecules. They are evolved from the in vitro process known as systematic evolution of ligands by exponential enrichment (SELEX). This paper reports a simple experimental approach to elucidate the binding region of small targets binding aptamers.
View Article and Find Full Text PDFEnzyme Microb Technol
May 2020
Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
The CRISPR/Cas9 system has been successfully applied for gene editing in filamentous fungi. Previous studies reported that single stranded oligonucleotides can be used as repair templates to induce point mutations in some filamentous fungi belonging to genus Aspergillus. In Aspergillus niger, extensive research has been performed on regulation of plant biomass degradation, addressing transcription factors such as XlnR or GaaR, involved in (hemi-)cellulose and pectin utilization, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!