State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062653 | PMC |
http://dx.doi.org/10.1007/s00340-016-6608-4 | DOI Listing |
Photoacoustics
February 2025
College of Control Science & Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany.
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom, such as light and mechanics, is of interest for a wide range of applications in quantum technologies. Here, we propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system and the accompanying light wave. The effect is achieved by applying optical pump pulses to state-of-the-art waveguides, exciting a Brillouin Stokes process.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Optical tweezers use strongly focused light for trapping, characterizing, and manipulating objects in the microscopic and nanoscopic regimes. However, fully understanding optical trapping at the nanoscale remains a significant challenge. This holds importance because the nanoscale is the frontier for numerous promising advancements, ranging from enhancing single-molecule investigations in biology to developing hybrid devices for nanoelectronics and photonics and exploring fundamental quantum phenomena in opto-mechanics.
View Article and Find Full Text PDFLight Sci Appl
September 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Cavity optomechanical systems have enabled precision sensing of magnetic fields, by leveraging the optical resonance-enhanced readout and mechanical resonance-enhanced response. Previous studies have successfully achieved mass-produced and reproducible microcavity optomechanical magnetometry (MCOM) by incorporating Terfenol-D thin films into high-quality (Q) factor whispering gallery mode (WGM) microcavities. However, the sensitivity was limited to 585 pT Hz, over 20 times inferior to those using Terfenol-D particles.
View Article and Find Full Text PDFNat Commun
July 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing. Here, we present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators on silicon nitride photonic circuits. Such an actuator couples microwave signals to a high-overtone bulk acoustic resonator defined by the silica cladding of the optical waveguide core, suspended to enhance electromechanical and optomechanical couplings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!