Angiotensin converting enzyme-2 (ACE2) is a recently described homologue of the vasoactive peptidase, angiotensin converting enzyme (ACE). Like ACE, ACE2 is an integral (type I) membrane zinc metallopeptidase, which exists as an ectoenzyme. ACE2 is less widely distributed than ACE in the body, being expressed at highest concentrations in the heart, kidney and testis. ACE2 also differs from ACE in its substrate specificity, functioning exclusively as a carboxypeptidase rather than a peptidyl dipeptidase. A key role for ACE2 appears to be emerging in the conversion of angiotensin II to angiotensin (1-7), allowing it to act as a counter-balance to the actions of ACE. ACE2 has been localised to the endothelial and epithelial cells of the heart and kidney where it may have a role at the cell surface in hydrolysing bioactive peptides such as angiotensin II present in the circulation. A role for ACE2 in the metabolism of other biologically active peptides also needs to be considered. ACE2 also serendipitously appears to act as a receptor for the severe acute respiratory syndrome (SARS) coronavirus. Studies using mice, and other emerging studies and , have revealed that ACE2 has important functions in cardiac regulation and diabetes. Together with its role as a SARS receptor, ACE2 is therefore likely to be an important therapeutic target in a diverse range of disease states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088140 | PMC |
http://dx.doi.org/10.1007/s10989-004-2387-6 | DOI Listing |
Lipids Health Dis
January 2025
Department of Cardiology, West China Hospital, Sichuan University West China School of Medicine, 37 Guoxue Road, Chengdu, Sichuan, 610041, China.
Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).
View Article and Find Full Text PDFInflamm Res
January 2025
Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.
Background And Aims: Endocan has been scarcely explored in COVID-19, especially regarding its modulation by veno-venous extracorporeal membrane oxygenation (VV-ECMO), hypertension or previous renin-angiotensin-aldosterone system (RAAS) inhibitors treatment. We compared endocan and other endotheliitis markers in hospitalized COVID-19 patients and assessed their modulation by VV-ECMO, hypertension and previous RAAS inhibitors treatment.
Material And Methods: Serum endocan, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin were measured in "severe" (n = 27), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) COVID-19 patients at admission, days 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point.
Viruses
December 2024
Scientific Research Institute for Biological Safety Problems, Ministry of Health of Kazakhstan, Almaty 080409, Kazakhstan.
The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
For several decades, protein drugs (biologics) made in cell cultures have been delivered as sterile injections, decreasing their affordability and patient preference. Angiotensin Converting Enzyme 2 (ACE2) gum is the first engineered human blood protein expressed in plant cells approved by the FDA without the need for purification and is a cold-chain and noninvasive drug delivery. This biologic is currently being evaluated in human clinical studies to debulk SARS-CoV-2 in the oral cavity to reduce coronavirus infection/transmission (NCT00543318).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!