A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of airborne bacteria by 16S rDNA sequencing, MALDI-TOF MS and the MIDI microbial identification system. | LitMetric

The aim of this study was to collect and identify airborne bacteria in Norway, Sweden and Finland and to compare three different technologies for identifying collected airborne bacterial isolates: the "gold standard" method 16S rDNA sequencing, MALDI-TOF MS using the MALDI Biotyper 2.0 and the MIDI Sherlock Microbial Identification System (MIDI MIS system). Airborne bacteria were collected during three different periods from May to October 2009 using air sampling directly on agar plates. A total of 140 isolates were collected during three sampling campaigns, and 74 % (103) of these isolates were analyzed by all three methods. The dominant genera in Norway and Finland were the gram-positive bacteria and , whereas the gram-negative bacterium was the dominant genus in Sweden. Using 16S rDNA sequencing, MALDI-TOF MS and MIDI MIS analysis, 83, 79 and 75 %, respectively, of the isolates were identified and assigned to order or higher taxonomic levels. In this study, the MALDI-TOF MS combining with the MALDI Biotyper 2.0 classification tool was demonstrated to be a fast and reliable alternative for identifying the airborne bacterial isolates. These studies have increased knowledge about the airborne bacterial background in outdoor air, which can be useful for evaluating and improving the operational performance of biological detectors in various environments. To our knowledge, this is the first time that 16S rDNA sequencing, MALDI-TOF MS and MIDI MIS analysis technologies have been compared for their efficiency in identifying airborne bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087874PMC
http://dx.doi.org/10.1007/s10453-015-9363-9DOI Listing

Publication Analysis

Top Keywords

airborne bacteria
16
16s rdna
16
rdna sequencing
16
sequencing maldi-tof
16
maldi-tof midi
12
airborne bacterial
12
midi mis
12
microbial identification
8
identification system
8
bacterial isolates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!