Chronic Ethanol Feeding in Mice Decreases Expression of Genes for Major Structural Bone Proteins in a Nox4-Independent Manner.

J Pharmacol Exp Ther

Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)

Published: June 2020

Bone loss in response to alcohol intake has previously been hypothesized to be mediated by excessive production of reactive oxygen species via NADPH oxidase (Nox) enzymes. Nox4 is one of several Nox enzymes expressed in bone. We investigated the role of Nox4 in the chondro-osteoblastic lineage of the long bones in mice during normal chow feeding and during chronic ethanol feeding for 90 days. We generated mice with a genotype () allowing conditional knockout of Nox4 in the limb bud mesenchyme. Adult mice had 95% knockdown of Nox4 expression in the femoral shafts. For mice on regular chow, only whole-body Nox4 knockout mice had clearly increased cortical thickness and bone mineral density in the tibiae. When chronically fed a liquid diet with and without ethanol, conditional Nox4 knockout mice had slightly reduced dimensions of the cortical and trabecular regions of the tibiae ( < 0.1). The ethanol diet caused a significant reduction in cortical bone area and cortical thickness relative to a control diet without ethanol ( < 0.05). The ethanol diet further reduced gene expression of Frizzled related protein (Frzb), myosin heavy chain 3, and several genes encoding collagen and other major structural bone proteins ( < 0.05), whereas the Nox4 genotype had no effects on these genes. In conclusion, Nox4 expression from both mesenchymal and nonmesenchymal cell lineages appears to exert subtle effects on bone. However, chronic ethanol feeding reduces cortical bone mass and cortical gene expression of major structural bone proteins in a Nox4-independent manner. SIGNIFICANCE STATEMENT: Excessive alcohol intake contributes to osteopenia and osteoporosis, with oxidative stress caused by the activity of NADPH oxidases hypothesized to be a mediator. We tested the role of NADPH oxidase (Nox) 4 in osteoblast precursors in the long bones of mice with a conditional Nox4 knockout model. We found that Nox4 exerted effects independent of alcohol intake, and ethanol effects on bone were Nox4-independent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228502PMC
http://dx.doi.org/10.1124/jpet.119.264374DOI Listing

Publication Analysis

Top Keywords

chronic ethanol
12
ethanol feeding
12
major structural
12
structural bone
12
bone proteins
12
alcohol intake
12
nox4 knockout
12
bone
10
nox4
10
mice
8

Similar Publications

AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS.

Free Radic Biol Med

January 2025

Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China. Electronic address:

Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity.

View Article and Find Full Text PDF

In this study, antiulcer activity of ethanolic extract and solvent fractions of the aerial part of was investigated using ethanol-induced model of gastric ulceration in rats. The results showed that ethyl acetate, non-polar components and diethyl ether fractions have a remarkable antiulcerogenic activity; because they exhibited control-ulcer protection by 85.2%, 77.

View Article and Find Full Text PDF

Dental caries is a highly prevalent chronic condition globally. In recent years, scientists have turned to natural compounds such as plant extracts as an alternative to address concerns related to biofilm-mediated disease transmission, increasing bacterial resistance, and the adverse impacts of antibiotics. Consequently, this study investigated the antimicrobial properties of ethanolic, hydroethanolic, and aqueous extracts of L.

View Article and Find Full Text PDF

Elevated GABAergic neurotransmission prevents chronic intermittent ethanol induced hyperexcitability of intrinsic and extrinsic inputs to the ventral subiculum of female rats.

Neurobiol Stress

January 2025

Department of Translational Neuroscience, Wake Forest University, School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

With the recent rise in the rate of alcohol use disorder (AUD) in women, the historical gap between men and women living with this condition is narrowing. While there are many commonalities in how men and women are impacted by AUD, an accumulating body of evidence is revealing sex-dependent adaptations that may require distinct therapeutic approaches. Preclinical rodent studies are beginning to shed light on sex differences in the effects of chronic alcohol exposure on synaptic activity in a number of brain regions.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a common non-communicable chronic liver disease characterized by a spectrum of conditions ranging from steatosis and alcohol-associated steatohepatitis (AH) to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The pathogenesis of ALD involves a complex interplay of various molecular, biochemical, genetic, epigenetic, and environmental factors. While the mechanisms are well studied, therapeutic options remain limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!