Pb-based perovskite nanoparticles (PbPNPs) are amongst others used within highly efficient solar cells. PbPNPs can be released into the environment during their production, recycling or waste processing. In this study we investigated the fate and toxicity of PbPNPs on soil bacterial community under simulated natural environmental conditions across a range of pH, humic acid, and divalent cation concentrations. Increasing pH decreased PbPNPs-particle aggregation as well as Pb-ion release. The presence of only humic acid (HA) prevented the aggregation of PbPNPs-particles, whereas the presence of only divalent cations promoted the aggregation of PbPNPs-particles. The amount of Pb-ions released from the PbPNPs-particles was reduced in the presence of either HA or the divalent cations. Results of toxicity testing of PbPNPs by determining the metabolic potential of a bacterial community indicated that increasing pH alleviated particle toxicity. The presence of only HA reduced the toxicity of PbPNPs, while the presence of only divalent cations enhanced the particle toxicity. The coexistence of HA and divalent cations enhanced PbPNPs aggregation and reduced toxicity, with both Pb-ions and the interaction between the PbPNPs-particles and bacterial cells contributing to the toxic effects. Our study emphasized that environmental conditions play important roles that influencing the fate and toxicity of PbPNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126564 | DOI Listing |
Chem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
This study demonstrates that metal-doped-clay (MDC) can be a selective platform for ribose produced from formaldehyde under abiotic conditions. Ribose exhibits superior retention compared with other carbohydrates on naturally occurring minerals on the early Earth in the presence of divalent cations. This finding offers an insight into the necessity of the emergence of ribose as the backbone of extant RNA.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States.
In this work, we analyzed the effects of mineral scaling on the performance of a 3D interfacial solar evaporator, with a focus on the cations relevant to lithium recovery from brackish water. The field has been rapidly moving toward resource recovery applications from brines with higher cation concentrations. However, the potential complications caused by common minerals in these brines other than NaCl have been largely overlooked.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Faculty of Chemistry (UPV/EHU), Manuel Lardizabal 3, Donostia-San Sebastian 20018, Spain; DIPC, Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain. Electronic address:
Mimosine, a non-essential amino acid derived from plants, has a strong affinity for binding divalent and trivalent metal cations, including Zn, Ni, Fe, and Al. This ability endows mimosine with significant antimicrobial and anti-cancer properties, making it a promising candidate for therapeutic applications. Previous research has demonstrated the effectiveness of mimosine-containing peptides as metal chelators, offering a safer alternative to conventional chelation agents.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Geological Sciences, Pusan National University, Busan 46241, Korea.
Synthetic mordenite is widely used as a molecular sieve, adsorbent, and catalyst. To enhance these functionalities, it is crucial to understand the ion-exchange properties and cation-exchange sites of the zeolite. In this study, we analyzed the structural changes in fully Cs-, Sr-, Cd-, and Pb-exchanged mordenite by using synchrotron X-ray powder diffraction under ambient conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania.
Neuronal cell death induced by cell membrane damage is one of the major hallmarks of neurodegenerative diseases. Neuroinflammation precedes the loss of neurons; however, whether and how inflammation-related proteins contribute to the loss of membrane integrity remains unknown. We employed a range of biophysical tools, including high-speed atomic force microscopy, fluorescence spectroscopy, and electrochemical impedance spectroscopy, to ascertain whether the pro-inflammatory protein S100A8 induces alterations in biomimetic lipid membranes upon interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!