Despite increasing evidence implicating the important role of TDP-43 in the pathogenesis of a wide range of age-related neurodegenerative diseases, there is limited study of TDP-43 proteinopathy and its association with mitochondria during normal aging. Our findings of cytoplasmic accumulation of TDP-43 that is highly colocalized with mitochondria in neurons in selective brain regions in young animals in the absence of neuronal loss provide a novel insight into the development of TDP-43 proteinopathy and its contribution to neuronal loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787547 | PMC |
http://dx.doi.org/10.1177/1535370220914253 | DOI Listing |
Background: Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Department of Rehabilitation Physiotherapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
We report a case of amyotrophic lateral sclerosis (ALS) in a patient in their 50s, presenting with spastic paraparesis and bulbar palsy, treated with lung volume recruitment therapy (LVRT). From early stage in the disease, vital capacity (VC), lung insufflation capacity (LIC) and ALS Functional Rating Scale-Revised scores were regularly measured, and LVRT was continuously performed at home. After 10 years, the patient had complete limb function loss and required nutritional management via gastrostomy and full assistance with daily activities.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFFree Neuropathol
January 2024
Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!