Herein, we show a facile surfactant-free synthetic platform for the synthesis of nanostructured vanadium pentoxide (VO) using reline as a green and eco-friendly deep eutectic solvent. This new approach overcomes the dependence of the current synthetic methods on shape directing agents such as surfactants with potential detrimental effects on the final applications. Excellent morphological control is achieved by simply varying the water ratio in the reaction leading to the selective formation of VO 3D microbeads, 2D nanosheets, and 1D randomly arranged nanofleece. Using electrospray ionization mass spectroscopy (ESI-MS), we demonstrate that alkyl amine based ionic species are formed during the reline/water solvothermal treatment and that these play a key role in the resulting material morphology with templating and exfoliating properties. This work enables fundamental understanding of the activity-morphology relationship of vanadium oxide materials in catalysis, sensing applications, energy conversion, and energy storage as we prove the effect of surfactant-free VO structuring on battery performance as cathode materials. Nanostructured VO cathodes showed a faster charge-discharge response than the counterpart bulk-VO electrode with VO 2D nanosheet presenting the highest improvement of the rate performance in galvanostatic charge-discharge tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b17916 | DOI Listing |
Bioelectromagnetics
January 2025
Department of Electrical Engineering and ITEMS, University of Southern California, Los Angeles, California, USA.
As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Pathology and Pathophysiology, School of Medicine Nanjing University of Chinese Medicine Nanjing China.
Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism.
View Article and Find Full Text PDFDrug Target Insights
January 2025
Department of Pharmacology, University of Free State, Bloemfontein - South Africa.
Introduction: biofilm formation is a significant contributor to antifungal resistance, necessitating new treatment strategies. Lin., a traditional herbal remedy, has shown promise in combating microbial infections.
View Article and Find Full Text PDFNarra J
December 2024
Department of Animal Production and Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, Indonesia.
Previous studies of IIA-1A5 have shown its potential as a probiotic in modulating gut microbiota and providing health benefits; however, its effects during pregnancy remain underexplored. The aim of this study was to assess the safety of fermented milk enriched with IIA-IA5 in pregnant mice. An experimental study was conducted at Universitas Andalas, Padang, Indonesia.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China.
White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!