A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Field Induced Fragmentation (Fif) Spectra of Oxygen Containing Volatile Organic Compounds with Reactive Stage Tandem Ion Mobility Spectrometry and Functional Group Classification by Neural Network Analysis. | LitMetric

Mobility isolated spectra were obtained for protonated monomers of 42 volatile oxygen containing organic compounds at ambient pressure using a tandem ion mobility spectrometer with a reactive stage between drift regions. Fragment ions of protonated monomers of alcohols, acetates, aldehydes, ketones, and ethers were produced in the reactive stage using a 3.3 MHz symmetrical sinusoidal waveform with an amplitude of 1.4 kV and mobility analyzed in a 19 mm long drift region. The resultant field induced fragmentation (FIF) spectra included residual intensities for protonated monomers and fragment ions with characteristic drift times and peak intensities, associated with ion mass and chemical class. High efficiency of fragmentation was observed with single bond cleavage of alcohols and in six-member ring rearrangements of acetates. Fragmentation was not observed, or seen weakly, with aldehydes, ethers, and ketones due to their strained four-member ring transition states. Neural networks were trained to categorize spectra by chemical class and tested with FIF spectra of both familiar and unfamiliar compounds. Rates of categorization were class dependent with best performance for alcohols and acetates, moderate performance for ketones, and worst performance for ethers and aldehydes. Trends in the rates of categorization within a chemical family can be understood as steric influences on the energy of activation for ion fragmentation. Electric fields greater than 129 Td or new designs of reactive stages with improved efficiency of fragmentation will be needed to extend the practice of reactive stage tandem IMS to an expanded selection of volatile organic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b05651DOI Listing

Publication Analysis

Top Keywords

reactive stage
16
fif spectra
12
organic compounds
12
protonated monomers
12
field induced
8
induced fragmentation
8
fragmentation fif
8
volatile organic
8
stage tandem
8
tandem ion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!