Despite the isolation of hundreds of bioactive isocyanides from terrestrial fungi and bacteria as well as marine organisms, the isocyanide functionality has so far received little attention from a medicinal chemistry standpoint. The widespread tenet that isocyanides are chemically and metabolically unstable has restricted bioactivity studies to their antifouling properties and technical applications. In order to confirm or refute this idea, the hepatic metabolism of six model isocyanides was investigated. Aromatic and primary isocyanides turned out to be unstable and metabolically labile, but secondary and tertiary isocyanides resisted metabolization, showing, in some cases, cytochrome P450 inhibitory properties. The potential therefore exists for the secondary and tertiary isocyanides to qualify them as pharmacophore groups, in particular as war-heads for metalloenzyme inhibition because of their potent metal-coordinating properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.9b00504DOI Listing

Publication Analysis

Top Keywords

pharmacophore groups
8
secondary tertiary
8
tertiary isocyanides
8
isocyanides
7
metabolic fate
4
fate isocyanide
4
isocyanide moiety
4
moiety isocyanides
4
isocyanides pharmacophore
4
groups neglected
4

Similar Publications

Toxoplasmosis induced by Toxoplasma gondii is a well-known health threat, that prompts fatal encephalitis increased with immunocompromised patients, in addition, it can cause chorioretinitis, microcephaly, stillbirth in the fetus and even led to death. Standard therapy uses sulfadiazine and pyrimethamine drugs revealed beneficial results during the acute stage, however, it has severe side effects. UPLC-ESI-MS/MS used to explore C.

View Article and Find Full Text PDF

Indoles as promising Therapeutics: A review of recent drug discovery efforts.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.

Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases.

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.

View Article and Find Full Text PDF

Large-scale prediction of biological activities with Active-IT system.

Biomed Khim

December 2024

Chemoinformatics Group - NEQUIM, Departamento de Quimica, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.

Traditional testing methods in pharmaceutical development can be time-consuming and costly, but in silico evaluation tools can offer a solution. Our in-house Active-IT system, a Ligand-Based Virtual Screening (LBVS) tool, was developed to predict the biological and pharmacological activities of small organic molecules. It includes four independent modules for generating molecular descriptors (3D-Pharma), machine learning modeling (ExCVBA), a database of bioactivity models, and a prediction module.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!