In recent years, photodetectors based on organic-inorganic lead halide perovskites have been studied extensively. However, the inclusion of lead in those materials can cause severe human health and environmental problems, which is undesirable for practical applications. Here, we report high-performance photodetectors with a tin-based perovskite/PEDOT:PSS vertical heterojunction. The device demonstrates a broadband photoresponse from NIR to UV. The maximum responsivity and gain are up to 2.6 × 10 A/W and 4.7 × 10, respectively. Moreover, a much shorter response time and higher detectivity can be achieved by reducing the thickness of PEDOT:PSS. The outstanding performance is due to the excellent optoelectronic properties of the perovskite and the photogating effect originating from the heterojunction. Furthermore, devices fabricated on flexible substrates can demonstrate not only high sensitivity but also excellent bending stability. This work opens up the opportunity of using lead-free perovskite in highly sensitive photodetectors with vertical heterojunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c01202 | DOI Listing |
Nat Mater
January 2025
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
Heterojunctions (HJs) based on two-dimensional (2D) transition metal dichalcogenides are considered promising candidates for next-generation electronic and optoelectronic devices. Here, vertical (V-type) and lateral (L-type) HJ diodes based on metallic 1T-VSe and semiconducting 2H-WSe with out-of-plane and in-plane contacts are designed. First-principles quantum transport simulations reveal that both V- and L-type VSe/WSe HJ diodes form p-type Schottky contacts.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Despite recent advancements in organic photovoltaics (OPVs), further improvements in power conversion efficiency (PCE) and device lifetime are necessary for commercial viability. Strategies such as optimizing the molecular orientation and minimizing the charge traps of organic films are particularly effective in enhancing photovoltaic performance. In this study, we successfully utilized vacuum electrospray deposition (VESD) to achieve favourable face-on stacking geometries while preserving the integrity of the interfaces in poly(3-hexylthiophene-2,5-diyl) (P3HT): [6,6]-phenyl-C-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China.
Fast-response photodetectors have attracted considerable attention in the application of high-speed communication, real-time monitoring, and optical imaging systems. However, most reported photodetectors suffer from limitations of the inherent properties of materials, low carrier transport efficiency, and unmatched interfaces, which lead to a low response speed. Here, we report a WS/graphene/MoS vertical van der Waals heterojunction fabricated by mechanical exfoliation and dry transfer methods for fast response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!