Heterozygous missense variants cause ataxia, cognitive decline, and STUB1 mislocalization.

Neurol Genet

Department of Neurology (D.-H.C., E.H., S.J., T.D.B.), University of Washington, Seattle; Department of Pathology (C.L., C.D.K.), Neuropathology Division, University of Washington, Seattle; Geriatric Research, Education, and Clinical Center (GRECC) (M.Y., D.G.C., W.H.R., T.D.B.), VA Puget Sound Health Care System, Seattle, WA; Department of Medicine (M.K.N.-K., W.H.R., T.D.B.), Division of Medical Genetics, University of Washington, Seattle; Mental Illness Research, Education, and Clinical Center (MIRECC) (J.S.M., W.H.R.), VA Puget Sound Health Care System, Seattle, WA; Department of Psychiatry and Behavioral Sciences (J.S.M., W.H.R.), University of Washington, Seattle; Department of Neurology (C.M.G.), University of Chicago, IL; Department of Medicine (D.G.C.), Division of Gerontology and Geriatric Medicine, University of Washington, Seattle; and Department of Pharmacology (D.G.C.), University of Washington, Seattle.

Published: April 2020

AI Article Synopsis

  • The study aimed to find the genetic cause of autosomal dominant ataxia accompanied by cognitive decline and behavioral issues in two families while exploring brain abnormalities related to the disease.
  • Researchers used exome sequencing and conducted brain evaluations, discovering mutations associated with a dominant inheritance pattern, along with significant Purkinje cell loss and unique STUB1 protein disruptions.
  • Results confirmed the condition’s association with autism and cognitive disabilities, establishing both dominant and recessive genetic patterns in ataxia, with notable cerebellar pathology findings.

Article Abstract

Objective: To identify the genetic cause of autosomal dominant ataxia complicated by behavioral abnormalities, cognitive decline, and autism in 2 families and to characterize brain neuropathologic signatures of dominant -related ataxia and investigate the effects of pathogenic variants on localization.

Methods: Clinical and research-based exome sequencing was used to identify the causative variants for autosomal dominant ataxia in 2 families. Gross and microscopic neuropathologic evaluations were performed on the brains of 4 affected individuals in these families.

Results: Mutations in have been primarily associated with childhood-onset autosomal recessive ataxia, but here we report heterozygous missense variants in (p.Ile53Thr and p.The37Leu) confirming the recent reports of autosomal dominant inheritance. Cerebellar atrophy on imaging and cognitive deficits often preceded ataxia. Unique neuropathologic examination of the 4 brains showed the marked loss of Purkinje cells (PCs) without microscopic evidence of significant pathology outside the cerebellum. The normal pattern of polarized somatodendritic STUB1 protein expression in PCs was lost, resulting in aberrant STUB1 localization in the distal PC dendritic arbors.

Conclusions: This study confirms a dominant inheritance pattern in -ataxia in addition to a recessive one and documents its association with cognitive and behavioral disability, including autism. In the most extensive analysis of cerebellar pathology in this disease, we demonstrate disruption of STUB1 protein in PCs as part of the underlying pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073456PMC
http://dx.doi.org/10.1212/NXG.0000000000000397DOI Listing

Publication Analysis

Top Keywords

autosomal dominant
12
heterozygous missense
8
missense variants
8
cognitive decline
8
dominant ataxia
8
dominant inheritance
8
stub1 protein
8
ataxia
6
dominant
5
variants
4

Similar Publications

Background And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.

View Article and Find Full Text PDF

Neutrophil elastase () mutations are the most common cause of cyclic (CyN) and congenital neutropenia (SCN), two autosomal dominant disorders causing recurrent infections due to impaired neutrophil production. Granulocyte colony-stimulating factor (G-CSF) corrects neutropenia but has adverse effects, including bone pain and in some cases, an increased risk of myelodysplasia (MDS) and acute myeloid leukemia (AML). Hematopoietic stem cell transplantation is an alternative but is limited by its complications and donor availability.

View Article and Find Full Text PDF

Case report: Multisystemic smooth muscle dysfunction syndrome: a rare genetic cause of infantile interstitial lung disease.

Front Pharmacol

January 2025

Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

Multisystemic smooth muscle dysfunction syndrome (MSMDS) is an autosomal dominant disorder caused by mutations in the gene, resulting in variable clinical manifestation and multi-organ dysfunction. Interstitial lung disease (ILD) is a rare phenotype of this condition. We describe a rare infant case of an 8-month-old boy who presented with progressively worsening dyspnea, along with intermittent episodes of respiratory distress and cyanosis since birth.

View Article and Find Full Text PDF

Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.

View Article and Find Full Text PDF

Presentation and outcome of Alagille syndrome in paediatric patients at State Academic Hospital in South Africa.

Sudan J Paediatr

January 2024

Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Alagille syndrome (ALGS) is a multisystem autosomal dominant disorder in which patients may have characteristic facial features and involvement of the liver, heart, vessels, bones, eyes, kidneys and central nervous system. As there is little published data on ALGS in Africa, our aim was to describe the presentation and outcomes of ALGS in South Africa. The study constitutes a retrospective analysis of 25 patient medical records diagnosed as ALGS at Chris Hani Baragwanath Academic Hospital Pediatric Gastroenterology clinic between January 1992 and January 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!