The Ganges-Brahmaputra-Meghna and Karnaphuli (GBMK) River Basin in Nepal, India, and Bangladesh is among the world's most biodiverse river basins. However, human-induced habitat modification processes threaten the ecological structure of this river basin. Among the GBMK's diverse flora and fauna of this freshwater ecosystem, the endemic Ganges River dolphin (; GRD) is one of the most charismatic species in this freshwater ecosystem. Though a >50% population size reduction has occurred since 1957, researchers and decision-makers often overlook the persistence (or evolutionary potential) of this species in the highly fragmented GBMK. We define the evolutionary potential as the ability of species/populations to adapt in a changing environment by maintaining their genetic diversity. Here, we review how evolutionary trap mechanisms affect the dynamics and viability of the GRD (hereafter Ganges dolphin) populations after rapid declines in their population size and distribution. We detected six potential trap mechanisms that might affect the Ganges dolphin populations discretely or in combination: (a) habitat modification; (b) occurrence of finite and geographically restricted local populations; (c) ratio of effective to estimate population size; (d) increasing risk of inbreeding depression in genetically isolated groups; (e) at-risk behavioral attributes; and (f) direct fisheries-dolphin interactions. Because evolutionary traps appear most significant during low water season, they adversely affect demographic parameters, which reduce evolutionary potential. These traps have already caused local extirpation events; therefore, we recommend translocation among populations, including restoring and preserving essential habitats as immediate conservation strategies. Integrative evolutionary potential information based on demographic, genetic, and environmental data is still lacking. Thus, we identify gaps in the knowledge and suggest integrative approaches to understand the future of Ganges dolphins in South Asian waterways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083702PMC
http://dx.doi.org/10.1002/ece3.6102DOI Listing

Publication Analysis

Top Keywords

evolutionary potential
16
population size
12
ganges river
8
river basin
8
habitat modification
8
freshwater ecosystem
8
trap mechanisms
8
mechanisms affect
8
ganges dolphin
8
dolphin populations
8

Similar Publications

Hypertension is the foremost modifiable risk factor for cardiovascular and renal diseases, and overall mortality on a global scale. Genetic variants have the potential to alter an individual's drug responses. In the present study, we employed a comprehensive computational analysis to evaluate the structural and functional implications of deleterious missense variants to examine the influence of RAAS genes such as AT1R, AT2R, and MasR on susceptibility to hypertension.

View Article and Find Full Text PDF

Genome-wide identification and characterization of CsHSP60 gene family associated with heat and drought responses in tea plants (Camellia sinensis).

Plant Physiol Biochem

March 2025

Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Anxi County, Quanzhou, 362400, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:

Heat and drought are the stressors with significant adverse impacts on the yield stability of tea plants. The heat shock proteins 60 (HSP60s) play important roles in protecting plants under heat stress. However, the mechanism of HSP60s under heat and drought stresses remains unclear.

View Article and Find Full Text PDF

In vitro hydrogen production by mammal [FeFe]-hydrogenase-like protein.

Biochem Biophys Res Commun

March 2025

College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Although emerging evidence in mammals reveals that exogenously applied H positively regulates numerous physiological and pathological responses, it remains unclear whether and how mammalian cells produce H endogenously. Here, we report for the first time that recombinant human (Homo sapiens) and pig (Sus scrofa) nuclear prelamin recognition factor (Narf)-like proteins (also known as H. sapiens iron-only hydrogenase-like protein 1 [HsIOP1] and S.

View Article and Find Full Text PDF

First European record of Rickettsia bellii in Amblyomma rotundatum from Rhinella marina imported to Poland.

Exp Appl Acarol

March 2025

Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław, 50-335, Poland.

This study reports on the first documented case of Amblyomma rotundatum ticks, a species typically found in the Americas, parasitising an imported toad in Poland. A total of 12 ticks were collected from a single Rhinella marina toad. These ticks were identified as female specimens of A.

View Article and Find Full Text PDF

Structural Coloration and Epicuticular Wax Properties of the Distinctive Glaucous Leaves of Encephalartos horridus.

J Exp Bot

March 2025

Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.

The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!