Biomonitoring approaches and investigations of many ecological questions require assessments of the biodiversity of a given habitat. Small organisms, ranging from protozoans to metazoans, are of great ecological importance and comprise a major share of the planet's biodiversity but they are extremely difficult to identify, due to their minute body sizes and indistinct structures. Thus, most biodiversity studies that include small organisms draw on several methods for species delimitation, ranging from traditional microscopy to molecular techniques. In this study, we compared the efficiency of these methods by analyzing a community of nematodes. Specifically, we evaluated the performances of traditional morphological identification, single-specimen barcoding (Sanger sequencing), and metabarcoding in the identification of 1500 nematodes from sediment samples. The molecular approaches were based on the analysis of the 28S ribosomal large and 18S small subunits (LSU and SSU). The morphological analysis resulted in the determination of 22 nematode species. Barcoding identified a comparable number of operational taxonomic units (OTUs) based on 28S rDNA ( = 20) and fewer OTUs based on 18S rDNA ( = 12). Metabarcoding identified a higher OTU number but fewer amplicon sequence variants (AVSs) ( = 48 OTUs, = 17 ASVs for 28S rDNA, and = 31 OTUs, = 6 ASVs for 18S rDNA). Between the three approaches (morphology, barcoding, and metabarcoding), only three species (13.6%) were shared. This lack of taxonomic resolution hinders reliable community identifications to the species level. Further database curation will ensure the effective use of molecular species identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083658 | PMC |
http://dx.doi.org/10.1002/ece3.6104 | DOI Listing |
PLoS One
January 2025
Bio Bureau Biotechnology, Rio de Janeiro, Rio de Janeiro, Brazil.
Monitoring biodiversity on a large scale, such as in hydropower reservoirs, poses scientific challenges. Conventional methods such as passive fishing gear are prone to various biases, while the utilization of environmental DNA (eDNA) metabarcoding has been restricted. Most eDNA studies have primarily focused on replicating results from traditional methods, which themselves have limitations regarding representativeness and bias.
View Article and Find Full Text PDFSci Data
January 2025
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
Potato (Solanum tuberosum) is a staple crop important in global food security. As a leading potato producer, China faces significant challenges from insect pest infestations that compromise yield and quality. However, insect communities within Chinese potato fields remain poorly characterized.
View Article and Find Full Text PDFBiodivers Data J
January 2025
Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.
Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil.
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The "phycosphere" refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae.
View Article and Find Full Text PDFNat Commun
January 2025
Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany.
During the Pleistocene-Holocene transition, the dominant mammoth steppe ecosystem across northern Eurasia vanished, in parallel with megafauna extinctions. However, plant extinction patterns are rarely detected due to lack of identifiable fossil records. Here, we introduce a method for detection of plant taxa loss at regional (extirpation) to potentially global scale (extinction) and their causes, as determined from ancient plant DNA metabarcoding in sediment cores (sedaDNA) from lakes in Siberia and Alaska over the past 28,000 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!