A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparing raccoon major histocompatibility complex diversity in native and introduced ranges: Evidence for the importance of functional immune diversity for adaptation and survival in novel environments. | LitMetric

The adaptive potential of invasive species is related to the genetic diversity of the invader, which is influenced by genetic drift and natural selection. Typically, the genetic diversity of invaders is studied with neutral genetic markers; however, the expectation of reduced diversity has not been consistently supported by empirical studies. Here, we describe and interpret genetic diversity at both neutral microsatellite loci and the immune-related MHC-DRB locus of native and invasive populations of raccoon to better understand of how drift and selection impact patterns of genetic diversity during the invasion process. We found that despite the loss of many MHC (major histocompatibility complex) alleles in comparison with native populations, functional MHC supertypes are preserved in the invasive region. In the native raccoon population, the number of supertypes within individuals was higher than expected under a neutral model. The high level of individual functional divergence may facilitate the adaptation to local conditions in the invasive range. In the invasive populations, we also detected increased population structure at microsatellites compared to the MHC locus, further suggesting that balancing selection is acting on adaptively important regions of the raccoon genome. Finally, we found that alleles known to exhibit resistance to rabies in the native range, -*4, -*16 and -*102, were the most common alleles in the European populations, suggesting directional selection is acting on this locus. Our research shows empirical support for the importance of functional immune diversity for adaptation and survival in novel environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086054PMC
http://dx.doi.org/10.1111/eva.12898DOI Listing

Publication Analysis

Top Keywords

genetic diversity
16
major histocompatibility
8
histocompatibility complex
8
diversity
8
functional immune
8
immune diversity
8
diversity adaptation
8
adaptation survival
8
survival novel
8
novel environments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!