Heterophylly, or phenotypic plasticity in leaf form, is a remarkable feature of amphibious plants. When the shoots of these plants grow underwater, they often develop surprisingly different leaves from those that emerge in air. Among aquatic plants, it is typical for two or more distinct leaf development processes to be observed in the same individual exposed to different environments. Here, we analyze the developmental processes of heterophylly in the amphibious plant L. (Plantaginaceae). First, we reliably cultured this species under laboratory conditions and established a laboratory strain. We also established a framework for molecular-based developmental analyses, such as whole-mount hybridization. We observed several developmental features of aerial and submerged leaves, including changes in form, stomata and vein formation, and transition of the meristematic zone. Then we defined developmental stages for leaves. We found that in early stages, aerial and submerged leaf primordia had similar forms, but became discriminable through cell divisions with differential direction, and later became highly distinct via extensive cell elongation in submerged leaf primordia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076196 | PMC |
http://dx.doi.org/10.3389/fpls.2020.00269 | DOI Listing |
PLoS One
January 2025
Rice Department, Bangkok, Thailand.
Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.
View Article and Find Full Text PDFPlant Physiol
January 2025
Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.
View Article and Find Full Text PDFPlant Direct
January 2025
Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.
The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!