Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research, production, and use of genetically modified (GM) crops have split the world between supporters and opponents. Up to now, this technology has been limited to the control of weeds and pests, whereas the second generation of GM crops is expected to assist farmers in abiotic stress tolerance or improved nutritional features. Aiming to analyze this subject holistically, in this presentation we address an advanced technology for drought-tolerant GM crops, upscaling from molecular details obtained in the laboratory to an extensive network of field trials as well as the impact of the introduction of this innovation into the market. Sunflower has divergent transcription factors, which could be key actors in the drought response orchestrating several signal transduction pathways, generating an improved performance to deal with water deficit. One of such factors, HaHB4, belongs to the homeodomain-leucine zipper family and was first introduced in Arabidopsis. Transformed plants had improved tolerance to water deficits, through the inhibition of ethylene sensitivity and not by stomata closure. Wheat and soybean plants expressing the gene were obtained and cropped across a wide range of growing conditions exhibiting enhanced adaptation to drought-prone environments, the most important constraint affecting crop yield worldwide. The performance of wheat and soybean, however, differed slightly across mentioned environments; whereas the improved behavior of GM wheat respect to controls was less dependent on the temperature regime (cool or warm), differences between GM and wild-type soybeans were remarkably larger in warmer compared to cooler conditions. In both species, these GM crops are good candidates to become market products in the near future. In anticipation of consumers' and other stakeholders' interest, spectral analyses of field crops have been conducted to differentiate these GM crops from wild type and commercial cultivars. In this paper, the potential impact of the release of such market products is discussed, considering the perspectives of different stakeholders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069416 | PMC |
http://dx.doi.org/10.3389/fpls.2020.00178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!