Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Gram-positive bacterium Streptococcus pneumoniae is one of the common causes of community acquired pneumonia, meningitis, and otitis media. Analyzing the metabolic adaptation toward environmental stress conditions improves our understanding of its pathophysiology and its dependency on host-derived nutrients. In this study, extra- and intracellular metabolic profiles were evaluated to investigate the impact of antimicrobial compounds targeting different pathways of the metabolome of S. pneumoniae TIGR4Δcps. For the metabolomics approach, we analyzed the complex variety of metabolites by using H NMR, HPLC-MS, and GC-MS as different analytical techniques. Through this combination, we detected nearly 120 metabolites. For each antimicrobial compound, individual metabolic effects were detected that often comprised global biosynthetic pathways. Cefotaxime altered amino acids metabolism and carbon metabolism. The purine and pyrimidine metabolic pathways were mostly affected by moxifloxacin treatment. The combination of cefotaxime and azithromycin intensified the stress response compared with the use of the single antibiotic. However, we observed that three cell wall metabolites were altered only by treatment with the combination of the two antibiotics. Only moxifloxacin stress-induced alternation in CDP-ribitol concentration. Teixobactin-Arg10 resulted in global changes of pneumococcal metabolism. To meet the growing requirements for new antibiotics, our metabolomics approach has shown to be a promising complement to other OMICs investigations allowing insights into the mode of action of novel antimicrobial compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292801 | PMC |
http://dx.doi.org/10.1038/s41429-020-0296-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!