Although the malfunction of HtrA2/Omi leads to Parkinson's disease (PD), the underlying mechanism has remained unknown. Here, we showed that HtrA2/Omi specifically removed oligomeric α-Syn but not monomeric α-Syn to protect oligomeric α-Syn-induced neurodegeneration. Experiments using mnd2 mice indicated that HtrA2/Omi degraded oligomeric α-Syn specifically without affecting monomers. Transgenic Drosophila melanogaster experiments of the co-expression α-Syn and HtrA2/Omi and expression of genes individually also confirmed that pan-neuronal expression of HtrA2/Omi completely rescued Parkinsonism in the α-Syn-induced PD Drosophila model by specifically removing oligomeric α-Syn. HtrA2/Omi maintained the health and integrity of the brain and extended the life span of transgenic flies. Because HtrA2/Omi specifically degraded oligomeric α-Syn, co-expression of HtrA2/Omi and α-Syn in Drosophila eye maintained a healthy retina, while the expression of α-Syn induced retinal degeneration. This work showed that the bacterial function of HtrA to degrade toxic misfolded proteins is evolutionarily conserved in mammalian brains as HtrA2/Omi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093540 | PMC |
http://dx.doi.org/10.1038/s41598-020-62309-z | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:
Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!