Social behavior can alter the microbiome composition via transmission among social partners, but there have been few controlled experimental studies of gut microbiome transmission among social partners in primates. We collected longitudinal fecal samples from eight unrelated male-female pairs of marmoset monkeys prior to pairing and for 8 weeks following pairing. We then sequenced 16S rRNA to characterize the changes in the gut microbiome that resulted from the pairing. Marmoset pairs had a higher similarity in gut microbiome communities after pairing than before pairing. We discovered sex differences in the degrees of change in gut microbiome communities following pairing. Specifically, the gut microbiome communities in males exhibited greater dissimilarity from the prepairing stage (baseline) than the gut microbiome communities in females. Conversely, females showed a gradual stabilization in the rate of the gut microbiome community turnover. Importantly, we found that the male fecal samples harbored more female-source gut microbes after pairing, especially early in pairing (paired test, 0.05), possibly linked to sex bias in the frequencies of social behavior. From this controlled study, we report for the first time that pair-living primates undergo significant changes in gut microbiome during pairing and that females transmit more microbes to their partners than males do. The potential biases influencing which microbes are transmitted on the basis of sex and whether they are due to sex biases in other behavioral or physiological features need to be widely investigated in other nonhuman primates and humans in the future. In this controlled study, we collected longitudinal fecal samples from 16 male and female marmoset monkeys for 2 weeks prior to and for 8 weeks after pairing in male-female dyads. We report for the first time that marmoset monkeys undergo significant changes to the gut microbiome following pairing and that these changes are sex-biased; i.e., females transmit more microbes to their social partners than males do. Marmosets exhibit pair bonding behavior such as spatial proximity, physical contact, and grooming, and sex biases in these behavioral patterns may contribute to the observed sex bias in social transmission of gut microbiomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093826PMC
http://dx.doi.org/10.1128/mSystems.00910-19DOI Listing

Publication Analysis

Top Keywords

gut microbiome
40
microbiome communities
16
sex bias
12
gut
12
social partners
12
fecal samples
12
marmoset monkeys
12
changes gut
12
microbiome pairing
12
microbiome
11

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27).

View Article and Find Full Text PDF

Aging-induced Alternation in the Gut Microbiota Impairs Host Antibacterial Defense.

Adv Sci (Weinh)

January 2025

Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Older individuals experience increased susceptibility and mortality to bacterial infections, but the underlying etiology remains unclear. Herein, it is shown that aging-associated reduction of commensal Parabacteroides goldsteinii (P. goldsteinii) in both aged mice and humans critically contributes to worse outcomes of bacterial infection.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease.

J Cancer Res Ther

December 2024

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most important methods for treating a wide range of hematologic malignancies and bone marrow failure diseases. However, graft-versus-host disease (GVHD), a major complication associated with this method, can seriously affect the survival and quality of life of patients. Acute GVHD (aGVHD) occurs within 100 days after transplantation, and gastrointestinal aGVHD (GI-aGVHD) is one of the leading causes of nonrecurrent death after allo-HSCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!