Accurately characterizing human exposures to traffic-related air pollutants (TRAPs) is critical to public health protection. However, quantifying exposure to this single source is challenging, given its extremely heterogeneous chemical composition. Efforts using single-species tracers of TRAP are, thus, lacking in their ability to accurately reflect exposures to this complex mixture. There have been recent discussions centered on adopting a multipollutant perspective for sources with many emitted pollutants to maximize the benefits of control expenditures as well as to minimize population and ecosystem exposure. As part of a larger study aimed to assess a complete emission-to-exposure pathway of primary traffic pollution and understand exposure of individuals in the near-road environment, an intensive field campaign measured TRAPs and related data (e.g., meteorology, traffic counts, and regional air pollutant levels) in Atlanta along one of the busiest highway corridors in the US. Given the dynamic nature of the near-road environment, a multipollutant exposure metric, the Integrated Mobile Source Indicator (IMSI), which was generated based on emissions-based ratios, was calculated and compared to traditional single-species methods for assessing exposure to mobile source emissions. The current analysis examined how both traditional and non-traditional metrics vary spatially and temporally in the near-road environment, how they compare with each other, and whether they have the potential to offer more accurate means of assigning exposures to primary traffic emissions. The results indicate that compared to the traditional single pollutant specie, the multipollutant IMSI metric provided a more spatially stable method for assessing exposure, though variations occurred based on location with varying results among the six sites within a kilometer of the highway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202092 | PMC |
http://dx.doi.org/10.1016/j.envres.2020.109389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!