A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic core crosslinked camptothecin prodrug micelles with reduction sensitivity and boronic acid-mediated enhanced endocytosis: An intelligent tumor-targeted delivery nanoplatform. | LitMetric

Dynamic core crosslinked camptothecin prodrug micelles with reduction sensitivity and boronic acid-mediated enhanced endocytosis: An intelligent tumor-targeted delivery nanoplatform.

Int J Pharm

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China. Electronic address:

Published: April 2020

The physicochemical properties of camptothecin (CPT) limit its clinical application. To maximize drug efficacy, a novel intelligent prodrug delivery nanoplatform with a tumor microenvironment-cleavable core crosslinking strategy was proposed based on a phenylboronic acid (PBA) modified polyethylene glycol (PEG)-polyglutamic acid (PGlu) polymer with disulfide-bonded CPT, called PBA-PEG-P(Glu-co-GlussCPT). The fabricated nanoplatform was a spherical micelle that could withstand dilution and carry a large number of therapeutic molecules to the tumor tissues, thereby minimizing premature drug release. Moreover, the nanoplatform release 6.2 ± 0.62, 12.4 ± 1.8, 46.7 ± 0.33, and 79.2 ± 1.58% of CPT after incubation in 0.02, 1, 5, and 10 mM dithiothreitol for 24 h, respectively, exhibiting good reduction-sensitivity. Moreover, the nanoplatform exhibited significant antiproliferative activity against tumor cells. In addition, with PBA modification, the nanoplatform demonstrated enhanced endocytosis efficiency. This prodrug nanoplatform also exhibited significant in vivo antitumor efficacy on both murine and human hepatoma xenograft models, without showing significant systemic toxicity but demonstrating good biocompatibility. In other words, this novel intelligent prodrug delivery nanoplatform with tumor microenvironment-cleavable core crosslinking strategy and active targeting strategy based on prodrug polymer PBA-PEG-P(Glu-co-GlussCPT) demonstrated multiple functions and significant potential for antitumor drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119250DOI Listing

Publication Analysis

Top Keywords

delivery nanoplatform
12
enhanced endocytosis
8
nanoplatform
8
novel intelligent
8
intelligent prodrug
8
prodrug delivery
8
nanoplatform tumor
8
tumor microenvironment-cleavable
8
microenvironment-cleavable core
8
core crosslinking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!