The synthesis of conjugated Möbius molecules remains elusive since twisted and macrocyclic structures are low-entropy species sporting their own synthetic challenges. Here we report the synthesis of a Möbius macrocycle in 84% yield via alkyne metathesis of 2,13-bis(propynyl)[5]helicene. MALDI-MS, NMR spectroscopy, and X-ray diffraction indicated a trimeric product of twofold symmetry with / configurations in the helicene subunits. Alternatively, a threefold-symmetric structure was determined by DFT calculations to be more thermodynamically stable, illustrating remarkable kinetic selectivity for this alkyne metathesis cyclooligomerization. Computational studies provided insight into the kinetic selectivity, demonstrating a difference of 15.4 kcal/mol between the activation barriers for the / and / diastereodetermining steps. Computational (ACID and EDDB) and experimental (UV-vis and fluorescence spectroscopy and cyclic voltammetry) studies revealed weak conjugation between the alkyne and adjacent helicene groups as well as the lack of significant global aromaticity. Separation of the and enantiomers was achieved via chiral HPLC at the analytical scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c01430DOI Listing

Publication Analysis

Top Keywords

alkyne metathesis
12
synthesis möbius
8
kinetic selectivity
8
kinetic control
4
control synthesis
4
möbius trisethynyl[5]helicene
4
trisethynyl[5]helicene macrocycle
4
alkyne
4
macrocycle alkyne
4
metathesis synthesis
4

Similar Publications

Rh(II)-Catalyzed Selective C(sp)-H/C(sp)-H Bonds Cascade Insertion to Construct [6-8-6] Benzo-Fused Scaffold.

Org Lett

December 2024

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.

The fused eight-membered carbocycles (EMCs) play vital roles in the medicinal and biological investigations of many natural products and marketed drugs. The traditional synthesis of [6-8-6] benzo-fused derivatives involves multistep reactions and low yields, making the development of a one-step synthesis method a more challenging work. Here, we present a novel strategy for one-step construction of [6-8-6] benzo-fused scaffold from propargyl diazoacetates substituted with benzyl-nitrogen heterocyclic ring via Rh(ll)-catalyzed carbene/alkyne metathesis (CAM) and selective C-H bond insertion.

View Article and Find Full Text PDF
Article Synopsis
  • - A study investigated how gold catalysts affect the synthesis of pyrazolines and dihydropyridines from imines and methyl phenylpropiolate, focusing on three different imines with unique substituents.
  • - The research found that the type of nitrogen substituent influences the reaction path: NHCOMe leads to outward ring opening and pyrazoline products, while aromatic substituents prompt inward ring opening and dihydropyridine products.
  • - The configuration of dihydropyridine is determined by the substituent on the aromatic ring, with electron-donating groups causing direct formation of 1,4-dihydropyridine and electron-withdrawing groups leading to 1,2-dihyd
View Article and Find Full Text PDF

Stabilisation of a Strontium Hydride with a Monodentate Carbazolyl Ligand and its Reactivity.

Angew Chem Int Ed Engl

November 2024

Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstr. 15, Geb. 30.45, Karlsruhe, Germany.

The molecular strontium hydride 2 [(Cbz)SrH(L)] (L=benzene, toluene) was isolated and stabilized by employing a sterically demanding carbazole ligand (Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl). Compound 2 was synthesized via phenylsilane metathesis with the corresponding amide (Cbz)SrN(SiMe) and characterized by H NMR, XRD and vibrational spectroscopy methods. We further investigated the stoichiometric reactivity of 2 towards carbon monoxide, azobenzene and trimethylsilylacetylene, showing three distinct reactivity pathways: addition, reduction and deprotonation.

View Article and Find Full Text PDF

A low-valent niobium species generated from NbCl and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (-Me-CHD) in combination with PPh catalyzed a [2+2+1]-cycloaddition reaction of 3,3-disubstituted cyclopropenes and 2 equiv of diaryl/dialkylalkynes, leading to isomeric mixtures of multisubstituted cyclopentadienes -. The initial catalyst activation process was a one-electron reduction of NbCl with -Me-CHD to provide [NbCl(μ-Cl) (L)] (L = PMePh (), L = PPh ()) in the presence of phosphine ligands. An NMR spectroscopic time course experiment using complex as the catalyst revealed an induction period for the product formation, corresponding to an additional one-electron reduction of by the substrates to give catalytically active η-alkyne complexes of NbCl.

View Article and Find Full Text PDF

Transition metal-catalyzed alkyne metathesis has become a useful tool in synthetic chemistry. Well-defined alkyne metathesis catalysts comprise alkylidyne complexes of tungsten, molybdenum and rhenium. Non-d Re(v) alkylidyne catalysts exhibit advantages such as remarkable tolerance to air and moisture as well as excellent functional group compatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!