Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 μg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.110961DOI Listing

Publication Analysis

Top Keywords

repairing agent
8
anti-inflammatory antioxidant
8
dex nac-dex
8
caco-2 cells
8
nac-dex
6
bacterioruberin haloarchaea
4
haloarchaea dexamethasone
4
dexamethasone ultra-small
4
ultra-small macrophage-targeted
4
macrophage-targeted nanoparticles
4

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Neurosci Bull

January 2025

Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.

Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

Knockdown of RFC3 enhances the sensitivity of colon cancer cells to oxaliplatin by inducing ferroptosis.

Fundam Clin Pharmacol

February 2025

Department Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an People Hospital, Zhejiang, China.

Background: The development of resistance to oxaliplatin is a multifaceted process, often involving modifications in drug transport, DNA repair mechanisms, and the ability of cells to evade drug-induced apoptosis.

Objective: To evaluate whether knocking down RFC3 promotes the sensitivity of colorectal cancer (CRC) cells to oxaliplatin, potentially offering a new approach to combat drug resistance.

Methods: siRNA-mediated knockdown of RFC3 was employed in colorectal cancer cell lines to assess the impact on oxaliplatin responsiveness.

View Article and Find Full Text PDF

Purpose: Postoperative pain is a major concern for patients undergoing ultrasound scalpel-assisted hemorrhoidectomy, potentially exacerbated by delayed wound healing. This study aimed to evaluate the impact of an intimate cleansing gel containing chlorhexidine, hyaluronic acid, and other anti-inflammatory agents (Antroclean Fisioderm) on postoperative pain, itching, and wound healing in patients who had undergone this procedure.

Methods: This multicenter observational case-control study involved a cohort of consecutive adult patients who underwent hemorrhoidectomy using an ultrasound device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!