Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to high biomass and an ability to accumulate metals, fast-growing tree species are good candidates for phytoremediation. However, little is known about the long-distance transport of heavy metals in woody plants. The present work focused on the xylem transport and phloem remobilization of copper (Cu) in Salix integra Thunb. Seedlings with 45 d preculture were grown in nutrient solutions added with 0.32 and 10 μM CuSO for 5 d. Micro X-ray fluorescence imaging showed the high Cu intensity in xylem tissues of both stem and root cross sections, confirming that the xylem played a vital role in Cu transport from roots to shoots. Cu was presented in both xylem sap and phloem exudate, which demonstrates the long-distance transport of Cu via both vascular tissues. Additionally, the Cu spiked mature leaf exported approximately 78 % Cu to newly emerged shoots, and approximately 22 % downward to the new roots, confirming the bidirectional transport of Cu via phloem. To our knowledge, this is the first report to characterize Cu vascular transport and remobilization in fast-growing woody plants, and the findings provide valuable mechanistic understanding for the phytoremediation of Cu-contaminated soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122428 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!