Ocean acidification and hypoxia are concurrent in some coastal waters due to anthropogenic activities in the past decades. In the natural environment, pH and dissolved oxygen (DO) may fluctuate and follow diel-cycling patterns, but such effects on marine animals have not been comprehensively studied compared to their constant effects. In order to study the effects of diel-cycling seawater acidification and hypoxia on the fitness of marine bivalves, the thick shell mussels Mytilus coruscus were exposed to two constant levels of dissolved oxygen (2 mg/L, 8 mg/L) under two pH treatments (7.3, 8.1), as well as single diel fluctuating pH or DO, and the combined diel fluctuating of pH and DO for three weeks. The experimental results showed that constant acidification and hypoxia significantly reduced the extracellular pH (pH) and condition index (CI) of mussels, and significantly increased HCO, pCO and standard metabolic rate (SMR). Diel fluctuating hypoxia and acidification also significantly reduced the pH and CI, and significantly increased pCO and SMR, but had no significant effects on HCO. However, the diel-cycling acidification and hypoxia resulted in a higher CI compared to continuous exposure. In general, continuous and intermittent stress negatively impact the hemolymph and growth performance of mussels. However, mussels possess a little stronger resistance to diel-cycling seawater acidification and hypoxia than sustained stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138001 | DOI Listing |
J Transl Med
December 2024
Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Background: The typical pathological feature of pancreatic ductal adenocarcinoma (PDAC) is a significant increase in stromal reaction, leading to a hypoxic and poorly vascularized tumor microenvironment. Tumor cells undergo metabolic reprogramming, such as the Warburg effect, yet the underlying mechanisms are not fully understood.
Methods: Interference and overexpression experiments were conducted to analyze the in vivo and in vitro effects of USP7 on the growth and glycolysis of tumor cells.
Stem Cell Res Ther
December 2024
Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, Jiangsu Province, 212001, China.
Background: Premature ovarian insufficiency (POI) is an ovarian dysfunction disorder that significantly impacts female fertility. Ovarian granulosa cells (GCs) are crucial somatic components supporting oocyte development that rely on glycolysis for energy production, which is essential for follicular growth. Hypoxia-induced exosomal circRNAs regulate glycolysis, but their biological functions and molecular mechanisms in POI are largely unexplored.
View Article and Find Full Text PDFAdipose tissue dysfunction leads to abnormal lipid metabolism and high inflammation levels. This research aims to explore the role of Serpina3c, which is highly expressed in adipocytes, in obesity-related hypertriglyceridemia and metaflammation. Serpina3c global knockout (KO) mice, adipocyte-specific Serpina3c overexpressing mice, Serpina3c knockdown (KD) mice, and hypoxia-inducible factor 1 alpha (Hif1α) KD mice were fed a high-fat diet (HFD) for 16 weeks to generate obesity-related hypertriglyceridemia mice models.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
Transarterial chemoembolization (TACE) continues to stand as a primary option for treating unresectable hepatocellular carcinoma (HCC). However, the increased tumor hypoxia and acidification will lead to the immunosuppressive tumor microenvironment (TME) featuring exhausted T cells, limiting the effectiveness of subsequent therapies following TACE. Herein, a stable water-in-oil lipiodol Pickering emulsion by employing calcium phosphate nanoparticles (CaP NPs) as stabilizers is developed and used to encapsulate L-arginine (L-Arg), which is known for its ability to modulate T-cell metabolism.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!