The aim of the environmental risk assessment of chemicals is the prevention of unacceptable adverse effects on the environment. Therefore, the risk assessment for in-soil organisms, such as earthworms, is based on two key elements: the exposure assessment and the effect assessment. In the current risk assessment scheme, these two elements are not linked. While for the exposure assessment, advanced exposure models can take the spatial and temporal scale of substances into account, the effect assessment in the lower tiers considers only a limited temporal and spatial variability. However, for soil organisms, such as earthworms, those scales play a significant role as species move through the soil in response to environmental factors. To overcome this gap, we propose a conceptual integration of pesticide exposure, ecology, and toxicological effects on earthworms using a modular modeling approach. An essential part of this modular approach is the environment module, which utilizes exposure models to provide spatially and temporally explicit information on environmental variables (e.g., temperature, moisture, organic matter content) and chemical concentrations. The behavior module uses this information and simulates the feeding and movement of different earthworm species using a trait-based approach. The resulting exposure can be processed by a toxicokinetic-toxicodynamic (TKTD) module. TKTD models are particularly suitable to make effect predictions for time-variable exposure situations as they include the processes of uptake, elimination, internal distribution, and biotransformation of chemicals and link the internal concentration to an effect at the organism level. The population module incorporates existing population models of different earthworm species. The modular approach is illustrated using a case study with an insecticide. Our results emphasize that using a modular model approach will facilitate the integration of exposure and effects and thus enhance the risk assessment of soil organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137673DOI Listing

Publication Analysis

Top Keywords

risk assessment
16
assessment
8
organisms earthworms
8
exposure
8
exposure assessment
8
exposure models
8
soil organisms
8
modular approach
8
earthworm species
8
approach
5

Similar Publications

Objective: To analyze the usefulness of mean mid-regional pro-adrenomedullin (MR-proADM) level to stratify risk in emergency department patients with solid tumors attended for febrile neutropenia after chemotherapy. To compare risk prediction with MR-proADM to that of conventional biomarkers and scores on the Multinational Association for Supportive Care in Cancer (MASCC) score.

Methods: Prospective observational cohort study enrolling patients with solid tumors who developed febrile neutropenia after chemotherapy.

View Article and Find Full Text PDF

Background: Transvenous pacemakers (TVP) and leadless pacemakers (LP) are two reliable permanent modalities for the treatment of heart rhythm disorders. Several observational studies explored the safety and efficacy of the two devices. The aim of this meta-analysis study is to present a comparative analysis of the safety of leadless versus transvenous pacemakers.

View Article and Find Full Text PDF

AxonFinder: Automated segmentation of tumor innervating neuronal fibers.

Heliyon

January 2025

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.

View Article and Find Full Text PDF

A Probabilistic Liquefaction Hazard Analysis: Case Studies from the Marmara Region.

Geotech Geol Eng (Dordr)

January 2025

School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, UK.

Earthquake induced soil liquefaction poses a significant threat to buildings and infrastructure, as evidenced by numerous catastrophic seismic events. Existing approaches of regional liquefaction hazard assessment predominantly rely on deterministic analysis methods. This paper presents a novel Probabilistic Liquefaction Hazard Analysis (PLHA) framework based on Monte-Carlo (MC) simulations to mitigate future seismic risks associated with liquefaction.

View Article and Find Full Text PDF

Fall prevention among older adults in KSA: Role of physical therapy.

J Taibah Univ Med Sci

December 2024

Department of Health Administration, College of Business Administration, King Saud University, Riyadh, KSA.

Objectives: Falls and fall-related injuries among older adults are a growing public health concern. Although multiple factors and co-morbidities are associated with falls, balance and gait disorders are among the most common causes. Physical therapists have expertise in fall-risk assessment and management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!