Design and analysis of an ultrasonic tactile sensor using electro-mechanical analogy.

Ultrasonics

Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Published: July 2020

This paper proposed a hybrid design approach of a vibro-concentrator, a vital component of an ultrasonic tactile sensor, by using electro-mechanical analogy. Lab experiments on soft materials with elastic modulus from 14 kPa to 150 kPa were conducted using the tactile sensor installed with the vibro-concentrator to verify the performance of the design. Various mechanical and electrical parameters, such as resonance frequency shift and equivalent conductance, were discussed, focusing on their feasibility as new stiffness indicators. As a variant of tactile sensors, ultrasonic tactile sensors have the advantage of high sensitivity and minimal contact with the object over traditional tactile sensors based on force-displacement principle. They detect the changes in mechanical vibration characteristics, mostly resonance frequency shift of the sensor, as an indicator of the mechanical properties of the object. A vibro-concentrator has been frequently adopted to improve the performance an ultrasonic tactile sensor, but its design has yet been systematically considered. We propose a hybrid design approach based on electro-mechanical analogy for both mechanical and electrical analyses. Mechanically, impedance analogy was adopted to design an ultrasonic vibration concentrator for the sensor to localize the contact and reinforce the vibration behavior at ~40 kHz. Electrically, we used mobility analogy to derive electrical parameters from the tactile sensing tests in lab environment. The competence of the design was demonstrated by mechanical and electrical characteristic tests. By investigating various electrical parameters from tactile sensing tests, the equivalent conductance determined by the electro-mechanical analysis was found to have almost perfectly linear relationship (R = 0.9998) with the samples' elastic modulus ranging from 10 kPa to 70 kPa, and showed its potential as a new stiffness indicator for soft materials. Further analyses suggested that the electrically determined series resonance frequency shift, parallel resonance frequency shift, and maximum phase angle frequency shift also had excellent linearities (R = 0.9947, 0.9842, and 0.9935, respectively) with sample's modulus and can be considered as indicator candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2020.106129DOI Listing

Publication Analysis

Top Keywords

frequency shift
20
ultrasonic tactile
16
tactile sensor
16
resonance frequency
16
electro-mechanical analogy
12
mechanical electrical
12
electrical parameters
12
tactile sensors
12
tactile
9
sensor electro-mechanical
8

Similar Publications

Introduction: The unique natural and social environments of East Asia may shape the characteristics of fungal skin diseases. However, there is a notable absence of thorough comparative analyses on this subject.

Methods: This research undertook a comprehensive analysis of the epidemiology and disease burden of fungal dermatoses across five East Asian countries (China, Japan, Republic of Korea, Democratic People's Republic of Korea and Mongolia) via the Global Burden of Disease (GBD) database from 1990 to 2021.

View Article and Find Full Text PDF

Qualitative and quantitative detection of sex-targeted hormones in chicken embryo based on terahertz spectroscopy and metamaterial technology.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Gender identification of chick embryos at the early stages of incubation is of significant importance to poultry industry. Existing studies showed reproductive hormone concentrations are associated with gender of chick embryos. Accurate detection of reproductive hormone concentration can assist in gender identification.

View Article and Find Full Text PDF

The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.

View Article and Find Full Text PDF

Calculations of the two-loop electron self-energy for the 1S Lamb shift are reported, performed to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear charge number and α is the fine structure constant). Our approach allows calculations to be extended to nuclear charges lower than previously possible and improves the numerical accuracy by more than an order of magnitude. Extrapolation of our all-order results to hydrogen yields a result twice as precise as the previously accepted value [E.

View Article and Find Full Text PDF

Background: Twitter (subsequently rebranded as X) is acknowledged by US health agencies, including the US Centers for Disease Control and Prevention (CDC), as an important public health communication tool. However, there is a lack of data describing its use by state health agencies over time. This knowledge is important amid a changing social media landscape in the wake of the COVID-19 pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!