At vertebrate neuromuscular junctions (NMJs), the synaptic basal lamina contains different extracellular matrix (ECM) proteins and synaptogenic factors that induce and maintain synaptic specializations. Here, we report that podosome-like structures (PLSs) induced by ubiquitous ECM proteins regulate the formation and remodeling of acetylcholine receptor (AChR) clusters via focal ECM degradation. Mechanistically, ECM degradation is mediated by PLS-directed trafficking and surface insertion of membrane-type 1 matrix metalloproteinase (MT1-MMP) to AChR clusters through microtubule-capturing mechanisms. Upon synaptic induction, MT1-MMP plays a crucial role in the recruitment of aneural AChR clusters for the assembly of postsynaptic specializations. Lastly, the structural defects of NMJs in embryonic MT1-MMP mice further demonstrate the physiological role of MT1-MMP in normal NMJ development. Collectively, this study suggests that postsynaptic MT1-MMP serves as a molecular switch to synaptogenesis by modulating local ECM environment for the deposition of synaptogenic signals that regulate postsynaptic differentiation at developing NMJs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093154 | PMC |
http://dx.doi.org/10.7554/eLife.54379 | DOI Listing |
Front Immunol
December 2024
Department of Neurology, Medical University of Vienna, Vienna, Austria.
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Department of Molecular, Cellular and Developmental Biology, 1105 N. University Avenue, Ann Arbor, MI 48109, USA.
The muscle-specific microRNA miR-206 has recently emerged as a potential regulator of genes involved in the formation and regeneration of the neuromuscular junction (NMJ). This study investigated miR-206-3p (miR-206) expression in synaptic and non-synaptic regions of denervated mice and α-dystrobrevin (Dtna)-knockout mice, as well as its impact on the formation and/or maintenance of agrin-induced acetylcholine receptor (AChR) clusters. In denervated, Dtna-deficient and crushed muscles, miR-206 expression significantly increased compared to what was seen for innervated muscles.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA.
Neuromuscular deficits compound the loss of contractile tissue in volumetric muscle loss (VML). Two avenues for promoting recovery are neuromuscular junction (NMJ)-promoting substrates (e.g.
View Article and Find Full Text PDFCell Death Differ
November 2024
Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells.
View Article and Find Full Text PDFClin Biochem
December 2024
Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada; Neurocode Lab. Inc. Bellingham, Washington, USA. Electronic address:
Acquired myasthenia gravis (MG) is an autoimmune disease targeting the specific proteins in the postsynaptic muscle membrane. 50% of ocular and 80% of generalized MG have acetylcholine receptor antibodies (AChR Abs). 1-10% of MG patients have antibodies against muscle-specific kinase (MuSK), and 2-50 % of seronegative MG cases have antibodies against lipoprotein-receptor-related protein4 antibodies (LRP4 Abs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!