Background: Hesperetin is a natural compound known for its cholesterol-lowering effect and a wide range of pharmacological activities.

Objectives: Investigating the potential anticancer activities of Hesperetin in malignant hematolymphoid cell lines HuT78 and MJ, derived from patients with Cutaneous T-Cell Lymphomas (CTCL).

Methods: The cytotoxic effect of Hesperetin on two different CTCL cell lines, HuT78 and MJ, was assessed by MTS-based colorimetric assay. Apoptosis, cell cycle, ROS (Reactive Oxygen Species) and molecular analysis were performed using flow-cytometry and immunoblotting.

Results: Hesperetin-treated CTCL cells were arrested at the sub-G1 phase of cell cycle with the concomitant decrease in the expression of the cell cycle regulator protein cyclin B. In addition, the study found that the cellular treatment with Hesperetin caused an induction of apoptosis, which was independent of ROS generation. Hesperetin caused a significant decrease in the expression level of anti-apoptotic protein Bcl-xL and an increase in cleaved caspase-3 and PARP proteins in CTCL cells. Furthermore, Hesperetin treatment in CTCL cells down-regulated the expression of Notch1 and phosphorylation of STAT3 (Tyr705) and inhibited NFκBp65.

Conclusion: This study highlights the anticancer properties of Hesperetin. Which induces apoptosis in CTCL cells via STAT3/Notch1/NFκB mediated signaling pathway, suggesting that further development of this novel class of flavonoid may contribute to new drug discovery for certain hematolymphoid malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871521409666200324110031DOI Listing

Publication Analysis

Top Keywords

ctcl cells
20
cell cycle
12
hesperetin
8
hesperetin induces
8
induces apoptosis
8
apoptosis ctcl
8
cell lines
8
lines hut78
8
decrease expression
8
hesperetin caused
8

Similar Publications

Cutaneous T-cell lymphomas (CTCLs) are a rare and heterogeneous subset of skin-localized, non-Hodgkin lymphomas. Our aim was to evaluate the in vitro antitumor activity of the multi-kinase inhibitor linifanib, either alone or in combination with metronomic vinorelbine (mVNR) or etoposide (mETO), on CTCL cells. In vitro proliferation assay and Luminex analysis showed that long-term, daily exposure of linifanib significantly inhibited the proliferation of the human CTCL cell line HH, in a concentration-dependent manner (IC = 48.

View Article and Find Full Text PDF

Modeling, synthesis and cell-based evaluation of pyridine-substituted analogs of CD3254 and fluorinated analogs of CBt-PMN as novel therapeutics.

Bioorg Med Chem

January 2025

School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA. Electronic address:

Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay.

View Article and Find Full Text PDF

PIK-75 (F7) is a potent multikinase inhibitor that targets p110α, DNA-PK, and p38γ. PIK-75 has shown potential as a therapy in preclinical cancer models, but it has not been used in the clinic, at least in part, due to limited solubility. We therefore developed a nanoparticle to encapsulate PIK-75 and enable targeted cellular delivery.

View Article and Find Full Text PDF

Background: Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB.

View Article and Find Full Text PDF

CD4/CD8 double-negative mycosis fungoides: a review.

Dermatol Reports

November 2024

Department of Dermatology, King Fahad Medical City, Riyadh, Saudi Arabia.

Mycosis fungoides (MF) stands as the predominant form of primary cutaneous T-cell lymphoma (CTCL). It manifests a diverse array of clinical, histological, and immunophenotypic variations, each bearing distinct prognostic implications. The typical immunophenotypic profile of mycosis fungoides involves CD3+/CD4+/CD45RO+ memory T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!