N-doped biochar as adsorption material for heavy metal removal has attracted increasing concern in environmental application due to its unique features. Here, N-doped biochar was prepared by hydrothermal carbonization of Camellia sinensis branch waste using KOH/NHCl at 120-280 °C for 2 h under 0.4-6.5 MPa, followed by structural analysis. The results showed that the highest N content determined by elemental analysis could reach up to 6.18% in biochar, and the major N species were involved in graphitic N, pyrrolic N, and pyridinic N. Interestingly, these N-doped biochar exhibited the effective adsorption ability of Cu, Pb, Zn, and Cr. The batch adsorption behavior had a better adjustment to the pseudo-second-order kinetic and the Langmuir adsorption isotherm models. In brief, the present results are attributed to develop low-cost adsorbent for removing heavy metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-08455-3 | DOI Listing |
Environ Res
December 2024
School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China. Electronic address:
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the S of material improved from 3.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. Electronic address:
Coagulation could effectively remove microplastics (MPs). However, MPs coagulated sludge was still a hazardous waste that is difficult to degrade. Nitrogen-doped carbon composite (N-PSMPC) was prepared by carbonizing MPs coagulated aluminum sludge (MP-CA) doped with cheap urea in this study.
View Article and Find Full Text PDFWater Res
December 2024
School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang Anning Hospital, Shenyang 110000, China. Electronic address:
J Environ Manage
December 2024
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China; Taizhou Institute of Zhejiang University, Taizhou, 318012, Zhejiang, China.
Adsorption removal of PCDD/Fs from flue gas is one of the important technologies for reducing environmental PCDD/Fs emissions. However, due to the lack of systematic research on the adsorption mechanism of PCDD/Fs, commercial activated carbon (AC) with a single pore size distribution and lack of surface functional groups has poor adsorption and removal efficiency for PCDD/Fs. Therefore, this study first used corncob as a raw material and prepared N-doped hierarchical porous biochar (NHPB) using a one-step activation method for efficient removal of PCDD/Fs.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, China. Electronic address:
Background: With the rapid development of industrialization, the excessive emission of S have become increasingly serious, leading to a surge in the content of S in nature. Rapid and accurate detection of S contamination in natural adaptogens is crucial for food safety. Annually, discarded eggshell waste, rich in organic and inorganic materials, poses environmental risks if landfilled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!