Background: Reduction of carbon emissions from peatlands is recognized as an important factor in global climate change mitigation. Within the SE Asia region, areas of deeper peat present the greatest carbon stocks, and therefore the greatest potential for future carbon emissions from degradation and fire. They also support most of the remaining lowland swamp forest and its associated biodiversity. Accurate maps of deep peat are central to providing correct estimates of peat carbon stocks and to facilitating appropriate management interventions. We present a rapid and cost-effective approach to peat thickness mapping in raised peat bogs that applies a model of peat bottom elevation based on field measurements subtracted from a surface elevation model created from airborne LiDAR data.
Results: In two raised peat bog test areas in Indonesia, we find that field peat thickness measurements correlate well with surface elevation derived from airborne LiDAR based DTMs (R 0.83-0.88), confirming that the peat bottom is often relatively flat. On this basis, we created a map of extent and depth of deep peat (> 3 m) from a new DTM that covers two-thirds of Sumatran peatlands, applying a flat peat bottom of 0.61 m +MSL determined from the average of 2446 field measurements. A deep peat area coverage of 2.6 Mha or 60.1% of the total peat area in eastern Sumatra is mapped, suggesting that deep peat in this region is more common than shallow peat and its extent was underestimated in earlier maps. The associated deep peat carbon stock range is 9.0-11.5 Pg C in eastern Sumatra alone.
Conclusion: We discuss how the deep peat map may be used to identify priority areas for peat and forest conservation and thereby help prevent major potential future carbon emissions and support the safeguarding of the remaining forest and biodiversity. We propose rapid application of this method to other coastal raised bog peatland areas in SE Asia in support of improved peatland zoning and management. We demonstrate that the upcoming global ICESat-2 and GEDI satellite LiDAR coverage will likely result in a global DTM that, within a few years, will be sufficiently accurate for this application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227361 | PMC |
http://dx.doi.org/10.1186/s13021-020-00139-2 | DOI Listing |
Sci Rep
January 2025
China University of Mining and Technology (Beijing), Beijing, 100083, China.
This study aims to evaluate the efficiency and energy release characteristics of different types of coal in pulse detonation engines (PDE) to advance the development of deep coal fluidization detonation technology, achieving more efficient and cleaner coal utilization. Using a custom PDE setup, experiments were conducted with four coal types at mass flow rates from 30 to 120 g/s. High-frequency pressure sensors assessed pressure dynamics and detonation wave propagation, complemented by numerical simulations for accuracy.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Center for Precision and Automated Agricultural Systems, Department of Biological Systems Engineering, Washington State University, Prosser, WA, United States.
Molecular-based detection of pathogens from potato tubers hold promise, but the initial sample extraction process is labor-intensive. Developing a robotic tuber sampling system, equipped with a fast and precise machine vision technique to identify optimal sampling locations on a potato tuber, offers a viable solution. However, detecting sampling locations such as eyes and stolon scar is challenging due to variability in their appearance, size, and shape, along with soil adhering to the tubers.
View Article and Find Full Text PDFNat Commun
January 2025
College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
Permafrost is a potentially important source of deglacial carbon release alongside deep-sea carbon outgassing. However, limited proxies have restricted our understanding in circumarctic regions and the last deglaciation. Tibetan Plateau (TP), the Earth's largest low-latitude and alpine permafrost region, remains underexplored.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Agricultural Experiment Station, University of the Virgin Islands, Kingshill, Virgin Islands, USA.
Ephemeral streams are important pollutant conduits, but the mechanisms that control nutrient transport to these systems remain unclear. In the US Virgin Islands (USVI), where most streams flow ephemerally, a lack of continuous hydrologic and water quality data limits our understanding of streamflow behavior and its influence on water quality. We therefore assessed the impact of soil moisture and hydrometeorological conditions on nitrogen (N) concentrations within an ephemeral stream on St.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!