In Silico Analysis of ACE Inhibitory Peptides from Chloroplast Proteins of Red Alga Grateloupia asiatica.

Mar Biotechnol (NY)

Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.

Published: June 2020

Inhibition of angiotensin I-converting enzyme (ACE) is one of the key factors to repress high blood pressure. Although many studies have been reported that seaweed protein hydrolysates showed the ACE inhibitory activity, the comprehensive understanding of the relationship was still unclear. In this study, we employed chloroplast genome for in silico analysis and compared it with in vitro experiments. We first extracted water-soluble proteins (WSP) from red alga Grateloupia asiatica, which contained mainly PE, PC, APC, and Rbc, and prepared WSP hydrolysate by thermolysin, resulting that the hydrolysate showed ACE inhibitory activity. Then, we determined the complete chloroplast genome of G. asiatica (187,518 bp: 206 protein-coding genes, 29 tRNA, and 3 rRNA) and clarified the amino acid sequences of main WSP, i.e., phycobiliproteins and Rubisco, to perform in silico analysis. Consequently, 190 potential ACE inhibitory peptides existed in the main WSP sequences, and 21 peptides were obtained by in silico thermolysin digestion. By comparing in vitro and in silico analyses, in vitro ACE inhibitory activity was correlated to the IC value from in silico digestion. Therefore, in silico approach provides insight into the comprehensive understanding of the potential bioactive peptides from seaweed proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-020-09959-2DOI Listing

Publication Analysis

Top Keywords

ace inhibitory
20
silico analysis
12
inhibitory activity
12
inhibitory peptides
8
red alga
8
alga grateloupia
8
grateloupia asiatica
8
comprehensive understanding
8
chloroplast genome
8
main wsp
8

Similar Publications

Sesame (Sesamum indicum L.) is an important oilseed crop, and its seeds are a source of edible oil and widely used as a nutritious food that is beneficial to health in oriental countries. Phytochemical and biological investigations of the seeds have been well reported; however, those of the leaves have been limited.

View Article and Find Full Text PDF

Deepstack-ACE: A deep stacking-based ensemble learning framework for the accelerated discovery of ACE inhibitory peptides.

Methods

December 2024

Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand. Electronic address:

Identifying angiotensin-I-converting enzyme (ACE) inhibitory peptides accurately is crucial for understanding the primary factor that regulates the renin-angiotensin system and for providing guidance in developing new potential drugs. Given the inherent experimental complexities, using computational methods for in silico peptide identification could be indispensable for facilitating the high-throughput characterization of ACE inhibitory peptides. In this paper, we propose a novel deep stacking-based ensemble learning framework, termed Deepstack-ACE, to precisely identify ACE inhibitory peptides.

View Article and Find Full Text PDF

Soybean peptide (SP) exhibits significant angiotensin-I-converting enzyme inhibitory (ACEI) activity, however, its strong bitterness restricts its use in food industry. This study aimed to reduce the bitterness of SP by natural deep eutectic solvent (NADES)-driven Maillard reaction (MR). Results showed that both the mixtures of Glucose-NADES and the Glucose-Xylose-NADES formed the hydrogen bonds and shown good thermal stability analyzed by using Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Angiotensin-I-converting enzyme inhibitory peptides from eel () bone collagen: preparation, identification, molecular docking, and protective function on HUVECs.

Front Nutr

December 2024

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Introduction: Hypertension is a chronic cardiovascular disease, which can trigger some disease such as heart failure, loss of vision or kidney. There were various peptides derived from food that are recognized for their ability to inhibit ACE activity, potentially leading to a reduction in blood pressure levels . The primary objective of this research is to discover ACE inhibitory peptides from protein hydrolysates of eel bone collagen (EBCHs).

View Article and Find Full Text PDF

The study assessed the peptide production by using potent Lactiplantibacillus plantarum KGL3A (MG722814) culture to ferment the sheep milk for evaluation of α-glucosidase inhibition, ACE inhibition, α-amylase inhibition, & inhibiting lipase activities. The maximal ACE inhibitory, α-amylase, α-glucosidase, & lipase inhibiting actions were 71.69 %, 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!