AI Article Synopsis

  • Cement augmentation significantly improves the stability of pedicle screws in osteoporotic vertebrae, enhancing load capacity from 183.8 N (non-augmented) to 268.1 N.
  • A comparison of two cement volumes (1 ml vs. 3 ml) showed that both increased fatigue load substantially, but there was no notable difference in stability between the two volumes.
  • Due to the high risk of complications like cement leakage, the study recommends using a reduced volume of 1 ml to achieve effective screw anchorage while minimizing risks.

Article Abstract

Purpose: Cement augmentation of pedicle screws is able to improve screw anchorage in osteoporotic vertebrae but is associated with a high complication rate. The goal of this study was to evaluate the impact of different cement volumes on pedicle screw fatigue strength.

Methods: Twenty-five human vertebral bodies (T12-L4) were collected from donors between 73 and 97 years of age. Bone density (BMD) was determined by quantitative computed tomography. Vertebral bodies were instrumented by conventional pedicle screws, and unilateral cement augmentation was performed. Thirteen vertebrae were augmented with a volume of 1 ml and twelve with a volume of 3 ml bone cement. A fatigue test was performed using a cranial-caudal sinusoidal, cyclic load (0.5 Hz) with increasing compression force (100 N + 0.1 N/cycles).

Results: The load to failure was 183.8 N for the non-augmented screws and was increased significantly to 268.1 N (p < 0.001) by cement augmentation. Augmentation with 1 ml bone cement increased the fatigue load by 41% while augmentation with 3 ml increased the failure load by 51% compared to the non-augmented screws, but there was no significant difference in fatigue loads between the specimens with screws augmented with 1 ml and screws augmented with 3 ml of bone cement (p = 0.504).

Conclusion: Cement augmentation significantly increases pedicle screw stability. The benefit of augmentation on screw anchorage was not significantly affected by reducing the applied volume of cement from 3 ml to 1 ml. Considering the high risk of cement leakage during augmentation, we recommend the usage of a reduced volume of 1 ml bone cement for each pedicle screw. These slides can be retrieved under Electronic Supplementary Material .

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-020-06376-wDOI Listing

Publication Analysis

Top Keywords

pedicle screws
12
cement augmentation
8
vertebral bodies
8
reduced cement
4
cement volume
4
volume affect
4
affect screw
4
screw stability
4
stability augmented
4
pedicle
4

Similar Publications

Background: High-grade Isthmic Spondylolisthesis often requires surgical intervention for spinal realignment and decompression. This study describes a modified Bohlman procedure utilizing robotic-assisted navigation and a Globus SI-LOK interbody device.

Methods: A retrospective review was conducted on three patients who underwent the modified Bohlman procedure for high-grade spondylolisthesis at a single hospital between 2022 and 2023.

View Article and Find Full Text PDF

Study Design: Narrative Review.

Objective: The management of spinal tumors requires a multi-disciplinary approach including surgery, radiation, and systemic therapy. Surgical approaches typically require posterior segmental instrumentation to maintain long-term spinal stability.

View Article and Find Full Text PDF

3D-printed (3DP) drill guides have demonstrated significant potential to accurately guide pedicle screw insertion in spinal surgery. However, their role in the upper cervical spine is not well established. This review aimed to compare the efficacy and safety of 3DP drill guides to the conventional fluoroscopic-guided free-hand technique for pedicle screw insertion in the upper cervical spine.

View Article and Find Full Text PDF

Introduction: Congenital lumbar kyphosis is present in about 15% of patients with myelomeningocele. Worsening of deformity with complications such as chronic skin ulcers and bone exposure is common. In patients under 8 years of age, treatment becomes even more challenging: in addition to resecting the apex of the kyphotic deformity, we should ideally stabilize the spine with fixation methods that do not interrupt the growth of the rib cage, associated with the challenging pelvic fixation in this population.

View Article and Find Full Text PDF

Objective: To investigate the predictive ability of the MRI-based vertebral bone quality (VBQ) score for pedicle screw loosening following instrumented transforaminal lumbar interbody fusion (TLIF).

Methods: Data from patients who have received one or two-level instrumented TLIF from February 2014 to March 2015 were retrospectively collected. Pedicle screw loosening was diagnosed when the radiolucent zone around the screw exceeded 1 mm in plain radiographs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!