Chymase is an angiotensin II-forming serine proteinase and elevation of its tissue activity occurs in various cardiovascular diseases. Several authors have suggested that there is an association between the renin-angiotensin system and atrial fibrillation (AF). Chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes (CML chymase dAIIFA) was investigated in patients with AF and patients in sinus rhythm. Consecutive outpatients were recruited at our hospital. CML chymase dAIIFA was measured using a Nma/Dnp-type fluorescence-quenching substrate of modified angiotensin I in the presence or absence of a specific serine proteinase inhibitor. To search the independent contributing factor of existence of AF, the analysis between groups was carried out using multivariate analysis after univariate analysis. The patients were classified into a sinus rhythm (SR) group (n = 459) or an AF group (n = 48). CML chymase dAIIFA was significantly higher in the AF group (622 pmol/min/mg) compared with the SR group (488 pmol/min/mg) (p < 0.001). Logistic regression analysis revealed that high CML chymase dAIIFA was an independent determinant of the existence of AF (p < 0.001). Elevation of CML chymase dAIIFA was associated with AF. Activation of chymase might be linked to atrial structural and electrical remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00380-020-01582-4 | DOI Listing |
Expert Opin Ther Targets
November 2023
Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
Introduction: Non-angiotensin converting enzyme mechanisms of angiotensin II production remain underappreciated in part due to the success of current therapies to ameliorate the impact of primary hypertension and atherosclerotic diseases of the heart and the blood vessels. This review scrutinize the current literature to highlight chymase role as a critical participant in the pathogenesis of cardiovascular disease and heart failure.
Areas Covered: We review the contemporaneous understanding of circulating and tissue biotransformation mechanisms of the angiotensins focusing on the role of chymase as an alternate tissue generating pathway for angiotensin II pathological mechanisms of action.
J Renin Angiotensin Aldosterone Syst
October 2023
Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
All strains of SARS-CoV-2, as well as previously described SARS-CoV and MERS-CoV, bind to ACE2, the cell membrane receptor of -coronaviruses. Monocarboxypeptidase ACE2 activity stops upon viral entry into cells, leading to inadequate tissue production of angiotensin 1-7 (Ang1-7). Acute lung injury due to the human respiratory syncytial virus (hRSV) or avian influenza A H7N9 and H5N1 viruses is also characterized by significant downregulation of lung ACE2 and increased systemic levels of angiotensin II (Ang II).
View Article and Find Full Text PDFHypertension
March 2021
Department of Anesthesiology (A.S., L.G.), Wake Forest School of Medicine, Winston Salem, NC.
The importance of canonical versus noncanonical mechanisms for the generation of angiotensins remains a major challenge that, in part, is heavily swayed by the relative efficacy of therapies designed to inhibit renin, ACE (angiotensin-converting enzyme), or the Ang II (Angiotensin II) receptor. Ang (1-12) (angiotensin [1-12]) is an Ang II forming substrate serving as a source for Ang II-mediated tissue actions. This study identifies for the first time the presence of Ang (1-12) in the blood of 52 normal (22 women) and 19 (13 women) patients with hypertension not receiving antihypertensive medication at the time of the study.
View Article and Find Full Text PDFMol Cell Endocrinol
June 2021
Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Va-Ile-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!