Synthetic immunity by remote control.

Theranostics

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA.

Published: May 2021

Cell-based immunotherapies, such as T cells engineered with chimeric antigen receptors (CARs), have the potential to cure patients of disease otherwise refractory to conventional treatments. Early-on-treatment and long-term durability of patient responses depend critically on the ability to control the potency of adoptively transferred T cells, as overactivation can lead to complications like cytokine release syndrome, and immunosuppression can result in ineffective responses to therapy. Drugs or biologics (e.g., cytokines) that modulate immune activity are limited by mass transport barriers that reduce the local effective drug concentration, and lack site or target cell specificity that results in toxicity. Emerging technologies that enable site-targeted, remote control of key T cell functions - including proliferation, antigen-sensing, and target-cell killing - have the potential to increase treatment precision and safety profile. These technologies are broadly applicable to other immune cells to expand immune cell therapies across many cancers and diseases. In this review, we highlight the opportunities, challenges and the current state-of-the-art for remote control of synthetic immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069089PMC
http://dx.doi.org/10.7150/thno.41305DOI Listing

Publication Analysis

Top Keywords

remote control
12
synthetic immunity
8
immunity remote
4
control
4
control cell-based
4
cell-based immunotherapies
4
immunotherapies cells
4
cells engineered
4
engineered chimeric
4
chimeric antigen
4

Similar Publications

Background: Left ventricular (LV) dilatation and extensive scar portend a poor prognosis in heart failure (HF). The Revivent TC system (BioVentrix Inc) is used either during a hybrid transcatheter-surgical or a surgical-only procedure to exclude transmural scar and reduce LV dimensions.

Objectives: The purpose of this study was to examine the safety and efficacy of the Revivent TC® anchor system in patients with HF.

View Article and Find Full Text PDF

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

Remote sensing change detection (RSCD), which utilizes dual-temporal images to predict change locations, plays an essential role in long-term Earth observation missions. Although many deep learning based RSCD models perform well, challenges remain in effectively extracting change information between dual-temporal images and fully leveraging interactions between their feature maps. To address these challenges, a constraint- and interaction-based network (CINet) for RSCD is proposed.

View Article and Find Full Text PDF

This paper deals with neuro-registration using tele-manipulation (Master-Slave Manipulation) to facilitate tele-surgery and enhance the overall accuracy and reach of the robot-assisted neurosurgery. Accurate Neuro-registration is important as the success of the surgical procedure highly depends on it. A 6-degree-of-freedom Parallel Kinematic Mechanism (6D-PKM) master-slave robot in tele-manipulation mode is utilized for both neuro-registration and neurosurgery.

View Article and Find Full Text PDF

Collaborative management partnerships (CMPs) between state wildlife authorities and nonprofit conservation organizations to manage protected areas (PAs) have been used increasingly across Sub-Saharan Africa since the 2000s. They aim to attract funding, build capacity, and increase the environmental effectiveness of PAs. Our study documents the rise of CMPs, examines their current extent, and measures their effectiveness in protecting habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!