Many antimicrobial peptides (AMPs) have multiple antimicrobial immunity effects. One such class of peptides is temporins. Temporins are the smallest (AMPs) found in nature and are highly active against gram-positive bacteria. Nowadays, there was a rapid increase in the availability of the 3D structure of proteins in PDB (protein data bank). The conserved residues and 3D structural conformations of temporins (AMPs) were still unknown. The present study explores the sequence analysis, alpha-helical structural conformations of temporins. The sequence of temporins was deracinated from APD3 database, the three-dimensional structure was constructed by homology modeling studies. The sequence analysis results show that the conserved residues among the peptide sequences, the maximum of the sequences are 70% alike to each other. The secondary structure prediction results revealed that 99% of temporin (AMPs) exhibited in alpha-helical form. The 3D structure speculated using RAMPAGE exposes the alpha-helical conformation in all temporins (AMPs). The phylogenetic analysis reveals the evolutionary relationships of temporins (AMPs), which are branched into seven clusters. As a result, we identified a list of potential temporin AMPs which docked to the antiviral protein (MERS-CoV), it shows good protein-peptide binding. This computational approach may serve as a good model for the rationale design of temporin based antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088259PMC
http://dx.doi.org/10.1007/s10989-019-09951-yDOI Listing

Publication Analysis

Top Keywords

temporins amps
12
alpha-helical structural
8
antimicrobial peptides
8
conserved residues
8
structural conformations
8
conformations temporins
8
sequence analysis
8
temporin amps
8
amps
7
temporins
7

Similar Publications

Antimicrobial peptides (AMPs) may mitigate the danger of increasing antimicrobial resistance. We aimed to determine the activities of catestatin, temporin A, nisin and cecropin A against Bacteroides fragilis ATCC 25285, Prevotella melaninogenica ATCC 25845, Cutibacterium acnes ATCC 6919, Peptostreptococcus anaerobius ATCC 27337 and Peptostreptococcus stomatis DSM 17678. strains.

View Article and Find Full Text PDF

In the face of rising the threat of resistant pathogens, antimicrobial peptides (AMPs) offer a viable alternative to the current challenge due to their broad-spectrum activity. This study focuses on enhancing the efficacy of temporin-SHa derived NST-2 peptide (), which is known for its antimicrobial and anticancer activities. We synthesized new analogs of using three strategies, i.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are a promising source of new compounds against resistant bacteria. Temporins are a class of AMPs found on the amphibian Rana temporaria and show activity against Gram-positive and Gram-negative bacteria. There are few studies on how these antimicrobials have been used, but new Temporin-F derivatives were engineered with Lys-substitutions to assess the impact of the net charge on antimicrobial activity and toxicity.

View Article and Find Full Text PDF

The evolution of methicillin-resistant () has required the development of new antimicrobial agents and new approaches to prevent and overcome drug resistance. AntiMicrobial Peptides (AMPs) represent promising alternatives due to their rapid bactericidal activity and their broad-spectrum of action against a wide range of microorganisms. The amphibian Temporins constitute a well-known family of AMPs with high antibacterial properties against both Gram-positive and Gram-negative bacteria.

View Article and Find Full Text PDF

Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects.

Antibiotics (Basel)

August 2024

Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.

Antimicrobial peptides (AMPs) are a promising class of therapeutic alternatives with broad-spectrum activity against resistant pathogens. Small AMPs like temporin-SHa () and its first-generation analog [G10a]-SHa () possess notable efficacy against Gram-positive and Gram-negative bacteria. In an effort to further improve this antimicrobial activity, second-generation analogs of were synthesised by replacing the natural glycine residue at position-10 of the parent molecule with atypical amino acids, such as D-Phenylalanine, D-Tyrosine and (2-Naphthyl)-D-alanine, to study the effect of hydrophobicity on antimicrobial efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!