Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background & Aims: Noninvasive and accurate methods are needed to identify patients with clinically significant portal hypertension (CSPH). We investigated the ability of deep convolutional neural network (CNN) analysis of computed tomography (CT) or magnetic resonance (MR) to identify patients with CSPH.
Methods: We collected liver and spleen images from patients who underwent contrast-enhanced CT or MR analysis within 14 days of transjugular catheterization for hepatic venous pressure gradient measurement. The CT cohort comprised participants with cirrhosis in the CHESS1701 study, performed at 4 university hospitals in China from August 2016 through September 2017. The MR cohort comprised participants with cirrhosis in the CHESS1802 study, performed at 8 university hospitals in China and 1 in Turkey from December 2018 through April 2019. Patients with CSPH were identified as those with a hepatic venous pressure gradient of 10 mm Hg or higher. In total, we analyzed 10,014 liver images and 899 spleen images collected from 679 participants who underwent CT analysis, and 45,554 liver and spleen images from 271 participants who underwent MR analysis. For each cohort, participants were shuffled and then sampled randomly and equiprobably for 6 times into training, validation, and test data sets (ratio, 3:1:1). Therefore, a total of 6 deep CNN models for each cohort were developed for identification of CSPH.
Results: The CT-based CNN analysis identified patients with CSPH with an area under the receiver operating characteristic curve (AUC) value of 0.998 in the training set (95% CI, 0.996-1.000), an AUC of 0.912 in the validation set (95% CI, 0.854-0.971), and an AUC of 0.933 (95% CI, 0.883-0.984) in the test data sets. The MR-based CNN analysis identified patients with CSPH with an AUC of 1.000 in the training set (95% CI, 0.999-1.000), an AUC of 0.924 in the validation set (95% CI, 0.833-1.000), and an AUC of 0.940 in the test data set (95% CI, 0.880-0.999). When the model development procedures were repeated 6 times, AUC values for all CNN analyses were 0.888 or greater, with no significant differences between rounds (P > .05).
Conclusions: We developed a deep CNN to analyze CT or MR images of liver and spleen from patients with cirrhosis that identifies patients with CSPH with an AUC value of 0.9. This provides a noninvasive and rapid method for detection of CSPH (ClincialTrials.gov numbers: NCT03138915 and NCT03766880).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cgh.2020.03.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!