Soluble microneedles (MNs) of four different hydrophilic polymers namely sodium carboxymethyl cellulose CMC), polyvinylpyrrolidone (PVP) K30, PVP K90 and sodium hyaluronate (HU) were fabricated by mold casting technique. When exposed to gamma radiation, a dose of 25 kilogray (kGy) was found to render the microneedle (MN) sterile. However, CMC was found to form MNs with poor mechanical properties, whereas PVP K30 MNs were drastically deformed upon exposure to applied dose as observed in bright field microscopy. Scanning electron microscopy (SEM) revealed that morphology of PVP K90 and HU MNs were not significantly affected at the applied dose. The appearances of characteristic peaks of irradiated MNs of PVP K90 and HU in Fourier-transform infrared spectra suggested structural integrity of the polymers on irradiation. Differential scanning calorimetry (DSC) indicated gamma irradiation failed to alter the glass transition temperature and thus mechanical properties of PVP K90 MNs. However, DSC and Powder X-ray Diffraction (PXRD) conclusively indicated that the degree in crystallinity of HU was substantially reduced on irradiation. dissolution profiles of sterile PVP K90 and HU MNs were similar to un-irradiated MNs with a similarity factor () of 64 and 54, respectively. dissolution studies in human subjects indicated that sterile MNs of PVP K90 and HU exhibited dissolution of 78.45 ± 1.09 and 78.57 ± 0.70%, respectively, after 20 min. The studies suggested that PVP K90 and HU could be suitable polymers to fabricate soluble MNs as the structural, morphological, microstructural and dissolution properties remained unaltered post γ sterilization.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2020.1742144DOI Listing

Publication Analysis

Top Keywords

pvp k90
28
k90 mns
12
mns
10
pvp
9
pvp k30
8
mechanical properties
8
properties pvp
8
applied dose
8
mns pvp
8
k90
7

Similar Publications

Dissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated L.

View Article and Find Full Text PDF
Article Synopsis
  • 3D printing offers a precise alternative for creating microneedle (MN) patches, with four distinct needle shapes designed via CAD for different applications.
  • Various printing parameters were tested, revealing optimal settings for each shape, and highlighting the importance of anti-aliasing to improve the finish of the MNs.
  • The resulting dissolving microneedles (DMNs) made from hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP) showcased superior properties, particularly shapes A and B, indicating that 3D printing can effectively produce custom MN patches with desirable characteristics.
View Article and Find Full Text PDF

Background: Cocrystals are an efficient way for the delivery of low soluble drugs but when dissolved they rapidly disproportionate. To formulate the cocrystals in tablets, cocrystals must be stabilized. In this study ibuprofen-nicotinamide (IBU-NIC) cocrystals were synthesized initially by slow solvent evaporation and for bulk production by fast solvent evaporation techniques.

View Article and Find Full Text PDF

Recently, increasing attention of researchers in the field of membrane technology has been paid to the development of membranes based on biopolymers. One of the well-proven polymers for the development of porous membranes is cellulose acetate (CA). This paper is devoted to the study of the influence of different parameters on ultrafiltration CA membrane formation and their transport properties, such as the variation in coagulation bath temperature, membrane shrinkage (post-treatment at 80 °C), introduction to casting CA solution of polymers (polyethylene glycol (PEG), polysulfone (PS), and Pluronic F127 (PL)) and carbon nanoparticles (SWCNTs, MWCNTs, GO, and C).

View Article and Find Full Text PDF

Sleep disorders are one of the most common acute reactions on the plateau, which can cause serious complications. However, there is no effective and safe treatment currently available. Nimodipine (NMD) is a dihydropyridine calcium channel blocker with neuroprotective and vasodilating activity, mainly used for the treatment of ischemic brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!