We review the impact of control systems and strategies on the energy efficiency of chemical processes. We show that, in many ways, good control performance is a necessary but not sufficient condition for energy efficiency. The direct effect of process control on energy efficiency is manyfold: Reducing output variability allows for operating chemical plants closer to their limits, where the energy/economic optima typically lie. Further, good control enables novel, transient operating strategies, such as conversion smoothing and demand response. Indirectly, control systems are key to the implementation and operation of more energy-efficient plant designs, as dictated by the process integration and intensification paradigms. These conclusions are supported with references to numerous examples from the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-chembioeng-092319-083227 | DOI Listing |
Inorg Chem
March 2025
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.
View Article and Find Full Text PDFWaste Manag Res
March 2025
Department of Mechanical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, DL, India.
This research determines the potential impact of reducing food waste on future energy consumption and pollutant emissions. The study uses system dynamics modelling to simulate the complex link between population, food demand, food waste output and their interactions with energy consumption in the food system and carbon dioxide (CO) emissions. Scenarios are developed by considering two elements: a reduction in food waste and an increase in energy output.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in BiSe/CuS nanowires. This hybrid, which CuS nanosheets were grown on BiSe nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Electrical Engineering, Faculty of Engineering, Suez Canal University, Ismailia, Egypt.
In distribution grids, excessive energy losses not only increase operational costs but also contribute to a larger environmental footprint due to inefficient resource utilization. Ensuring optimal placement of photovoltaic (PV) energy systems is crucial for achieving maximum efficiency and reliability in power distribution networks. This research introduces the Pelican Optimizer (PO) algorithm to optimally integrate solar PV systems to radial electrical distribution grids.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Electrochemical methodologies offer a transformative approach to sustainable chemical synthesis by enabling precise, energy-efficient transformations. Here, we report the selective electrochemical N-formylation of methylamine using methanol as both reagent and solvent, facilitated by a simple glassy carbon electrode. Under optimized conditions, we achieve a faradaic efficiency (FE) of 34% for methylformamide synthesis in a neutral NaClO electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!