Agriculture remains critical to Africa's socioeconomic development, employing 65% of the work force and contributing 32% of GDP (Gross Domestic Product). Low productivity, which characterises food production in many Africa countries, remains a major concern. Compounded by the effects of climate change and lack of technical expertise, recent reports suggest that the impacts of climate change on agriculture and food systems in African countries may have further-reaching consequences than previously anticipated. Thus, it has become imperative that African scientists and farmers adopt new technologies which facilitate their research and provide smart agricultural solutions to mitigating current and future climate change-related challenges. Advanced technologies have been developed across the globe to facilitate adaptation to climate change in the agriculture sector. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), synthetic biology, and genomic selection, among others, constitute examples of some of these technologies. In this work, emerging advanced technologies with the potential to effectively mitigate climate change in Africa are reviewed. The authors show how these technologies can be utilised to enhance knowledge discovery for increased production in a climate change-impacted environment. We conclude that the application of these technologies could empower African scientists to explore agricultural strategies more resilient to the effects of climate change. Additionally, we conclude that support for African scientists from the international community in various forms is necessary to help Africans avoid the full undesirable effects of climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154875 | PMC |
http://dx.doi.org/10.3390/plants9030381 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Geomatics Engineering, Hacettepe University, 06800, Beytepe, Ankara, Türkiye.
This study presents a hybrid methodology for planning green spaces to enhance urban sustainability and livability, evaluating the impacts of climate change on cities. Cities, once accommodating a small population, have become major centers of migration and development since the eighteenth century. Rapid urban growth intensifies infrastructure, environmental, and social challenges.
View Article and Find Full Text PDFNat Med
January 2025
Environment & Health Modelling (EHM) Lab, Department of Public Health Environment & Society, London School of Hygiene & Tropical Medicine, London, UK.
Previous health impact assessments of temperature-related mortality in Europe indicated that the mortality burden attributable to cold is much larger than for heat. Questions remain as to whether climate change can result in a net decrease in temperature-related mortality. In this study, we estimated how climate change could affect future heat-related and cold-related mortality in 854 European urban areas, under several climate, demographic and adaptation scenarios.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.
Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Sciences & Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran.
Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!