Mitochondria are usually located in the cytoplasm of cells where they generate adenosine triphosphate (ATP) to empower cellular functions. However, we found circulating mitochondria in human and animal blood. Electron microscopy confirmed the presence of mitochondria in adult human blood plasma. Flow cytometry analyses demonstrated that circulating mitochondria from the plasma of human cord blood and adult peripheral blood displayed the immune tolerance-associated membrane molecules such as CD270 and PD-L1 (programmed cell death-ligand 1). Similar data were obtained from fetal bovine serum (FBS) and horse serum of different vendors. Mitochondria remained detectable even after 56 °C heat inactivation. A real-time PCR array revealed purified mitochondria from animal sera expressed several genes that contribute to human T- and B-cell activation. Transwell experiments confirmed the migration capability of mitochondria through their expression of the chemokine receptor CXCR4 in responses to its ligand stromal-derived factor-1α (SDF-1α). Functional analysis established that human plasma mitochondria stimulated the proliferation of anti-CD3/CD28 bead-activated PBMC, up-regulated the percentage of activated CD4 T and CD8 T cells, and reduced the production of inflammatory cytokines. These findings suggested that the existence of circulating mitochondria in blood may function as a novel mediator for cell-cell communications and maintenance of homeostasis. Plasma-related products should be cautiously utilized in cell cultures due to the mitochondrial contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139699 | PMC |
http://dx.doi.org/10.3390/ijms21062122 | DOI Listing |
Cell Biol Toxicol
January 2025
Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, 30625 Hanover, Germany.
Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:
The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions.
View Article and Find Full Text PDFScand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!