Extraction behaviors of the 3 flavonoids taxifolin, diosmin, and quercetin have been investigated in leaves and bark. The following operation parameters-ethanol volume fraction, liquid-solid ratio, temperature, ultrasound irradiation power and time, and ultrasound frequency-were varied to study their effect on the yield of the 3 flavonoids during extraction. The results showed that a low extraction efficiency occurred at 293.15 K due to slow kinetics, while the situation was significantly improved at 333.15 K. The kinetic data for the extraction yields of the 3 flavonoids achieved good fits by the first-order kinetic model. From the thermodynamic analysis results, we realized that the ultrasound-assisted extraction of taxifolin, diosmin, and quercetin from the leaves and bark of was a spontaneous and endothermic process in which the disorder increased (Δ < 0, Δ > 0, and Δ > 0). According to the response surface methodology (RSM) analysis, under the optimal operation conditions (ethanol concentration of 50%, liquid-solid ratio of 20 mL/g, frequency of 45 kHz, extraction time of 39.25 min, ultrasound irradiation power of 160 W and temperature of 332.19 K), the total yield of the 3 flavonoids were 100.93 ± 4.01 mg/g from the leaves of (with 31.03 ± 1.51 mg/g, 0.31 ± 0.01 mg/g, 69.59 ± 2.57 mg/g for taxifolin, diosmin, and quercetin, respectively), and under the optimal operation conditions (ethanol concentration of 50%, liquid-solid ratio of 20 mL/g, frequency of 45 kHz, extraction time of 36.80 min, ultrasound irradiation power of 150 W and temperature of 328.78 K), 16.05 mg/g ± 0.38 mg/g were obtained from the bark of (with 1.44 ± 0.05 mg/g, 0.47 ± 0.01 mg/g, 14.14 ± 0.38 mg/g for taxifolin, diosmin, and quercetin, respectively), which were close to the prediction values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144359 | PMC |
http://dx.doi.org/10.3390/molecules25061401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!