Modern solid-state NMR techniques offer a wide range of opportunities for the structural characterization of frustrated Lewis pairs (FLPs), their aggregates, and the products of cooperative addition reactions at their two Lewis centers. This information is extremely valuable for materials that elude structural characterization by X-ray diffraction because of their nanocrystalline or amorphous character, (pseudo-)polymorphism, or other types of disordering phenomena inherent in the solid state. Aside from simple chemical shift measurements using single-pulse or cross-polarization/magic-angle spinning NMR detection techniques, the availability of advanced multidimensional and double-resonance NMR methods greatly deepened the informational content of these experiments. In particular, methods quantifying the magnetic dipole-dipole interaction strengths and indirect spin-spin interactions prove useful for the measurement of intermolecular association, connectivity, assessment of FLP-ligand distributions, and the stereochemistry of adducts. The present review illustrates several important solid-state NMR methods with some insightful applications to open questions in FLP chemistry, with a particular focus on supramolecular associates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144405PMC
http://dx.doi.org/10.3390/molecules25061400DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
12
structural characterization
12
nmr techniques
8
frustrated lewis
8
lewis pairs
8
nmr methods
8
techniques structural
4
characterization cyclic
4
cyclic aggregates
4
aggregates based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!