Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds.

Mater Sci Eng C Mater Biol Appl

International Centre of Electron Microscopy for Material Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Cracow, Poland. Electronic address:

Published: May 2020

The cellular response is the most crucial in vitro research. Materials' biocompatibility is determined based on cell proliferation and growth. Moreover, the topography of the scaffold surface is the key to enhance cell attachment and anchoring that importantly control further tissue development. Individual cell types have specific preferences regarding the type of surface and its geometry. In our research, we used poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) PHBV to produce two types of substrate: a 3D structure of electrospun fibers and 2D flat films. The PHBV products were morphologically characterized by scanning electron microscopy (SEM). The cytocompatibility was evaluated with cell viability and proliferation using two different types of cells: human osteoblast-like cells (MG-63) and NIH 3 T3 murine fibroblast cells. The behaviour of both cell types was compared on the similar PHBV fiber scaffolds and films using two types of polystyrene (PS) based substrate for the cell culture study: unmodified PS that is not favourable for the attachment of cells and on tissue culture polystyrene (TCPS) plates, which are chemically modify to enhance cells attachment. The results clearly showed high biocompatibility of PHBV as both types of cells showed similar proliferation. These results indicated that PHBV scaffolds are suitable for the development of multifunctional substrates facilitating the growth of different types of tissue regardless of the 3D and 2D designed structures for regeneration purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.110668DOI Listing

Publication Analysis

Top Keywords

poly3-hydroxybutyric acid-co-3-hydrovaleric
8
acid-co-3-hydrovaleric acid
8
acid phbv
8
cell types
8
types cells
8
types
7
phbv
6
cell
6
cells
6
osteoblasts fibroblasts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!